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Sec. 1 INTRODUCTION AND PRELIMINARY EVALUATION

The accuracy to which the positions can be determined using techniques
of celestial navigation depends to a great extent on the accuracy of the
navigation tables which in turn depend on astronomical constants and pa-
meters and the basic ephemeris data. The.specific task of this contract
has been to generate a computer program in the ALGOL programming language
which produces ephemeris and almanac data for use on the lunar surface.
However, because the quantities are going to be computed on an electronic
computer, it has been possible to treat the problem in complete generality.
Thus, with only relatively minor modifications, the Lunar Astronomical Navi-
gation System (LANS) can be applied to any navigation situation, including
the earth. If these computations were to be derived strictly for the moon,
several simplifying assumptions could be made. However, such a program
would have to be rewritten, for example, if an ephemeris for Mars or for
Mariner IV were desired. The lunar navigation system (LANS) requires only
that the appropriate data be read in and some of the internal constants
adjusted. Otherwise no major revisions are necessary. Neither is accuracy
sacrificed because the methods used are the same, in most instances, as
those used by observatories in the generation of terrestrial tables and
almanacs.

It must be said that the methods used in LANS are completely convention~
al. We have adopted these methods to our own particular needs and brought
them together into a consistent system. Thus, LANS represents a logical
extention of prodigious work which has gone into the production of the

terrestrial tables
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The Astronomical Ephemeris (A.E.) and The American Ephemeris and Nautical
Almanac (A.E.N.A.) And certainly the task of devising LANS would have been
more difficult if the excellent reference volume Explapatory Supplement to
the A.E. and A.E.N.A. had not been available. This text is invaluable to
those intimately involved in astrometry. Reference to this will be made
frequently throughout this report.

During the course of our investigation it came to our attention that
we were not the only ones interested in navigational ephemerides for use

on the moon. Gelins (1965) in a review appearing in the Foreign Science

Bulletin describes in some detail an ephemeris for use on the lunar sur-
face published in the U.S.S.R. The methods used differ in several respects
from our own. Some of the differences are basic so the more important are
listed below. The Russian tables were developed by Yakovkin, Dmenko and
Miz:

1) The Russian table uses libration constants computed on a flattening
value f = 0.82, we can input constants interpolated over a range of f
values. For sample calculations we have chosen f = 0.63 as indicated by
an extensive review by Goudas (1965).

2) The Russian method uses approximate corrections to terrestrial
ephemerides and hence are applicable only on the moon. They may not give
high accuracy in some cases

3) The Russian tables are computed assuming a uniform mean lunar
sidereal time defined as a specific number of terrestrial sidereal days.
Analogous lunar "hours, minutes, and seconds" were also defined. Since
lunar travelers will almost certainly have a knowledge of terrestrial time

and use a clock running on terrestrial mean solar time, Ephemeris, Universal
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or other mean solar time is the most convenient for navigation tables.
The most accurately determined uniform time is ephemeris time (E.T.) and
our table generation program uses this as the reference scale. If the out-
put is desired in mean terrestrial solar time (which is non-uniform) an
option is available which will enable interpolation to universal time (U.T.),
if the difference between E.T. and U.T. is known or can be predicted to a
fair degree of accuracy.

4) The Russian tables are apparently computed using Brown's theory
of lunar motion. The LANS system uses the lunar positions as provided by
the U. S. Naval Observatory. These are based on a recently improved lunar
theory and are considered accurate enough for timekeeping purposes.

Although we have considerable confidence in our programs, there are
certain areas in which our present knowledge is limited. Also, it is
desireable to actually test the lunar libration constants by direct obser-
vation. For this purpose we have proposed a contract extension dealing
specifically with these problems. Some of the problems encountered when
the programs are to be used for generating data of geodetic precision are:

1) size of free-libration terms

2) long-term periodic libration terms

3) 1incomplete knowledge of local gravity anomalies after 'geoid"

corrections have been applied

4) incomplete knowledge of center-of-mass coordinates of ''geoid" center.

Computer softwave developed or modified under this contract are:

1) LANS BASIC TABLE GENERATOR

2) LANS ORBIT COMPUTATION ROUTINE

3) LANS EMPIRICAL DATA PROCESSOR

4) ORTHOGONAL FUNCTION FITTING ROUTINE

5) POWER SERIES LEAST-SQUARES FITTING ROUTINE

6) JULIAN DATE - CALENDAR DATE CONVERTER
7) CENTER~OF-MASS GENERATOR.
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Sec. 2 SPHERICAL ASTRONOMY AND NAVIGATION

In the early days of seafaring, the science of astronomy and the art
of navigation developed together. However, as the need for higher accuracy
in timekeeping and positions became more widespread, astronomy and navi-
gation parted company. National observatories and international commitees
were set up to generate fundamental astronomical data. These could be
used by astronomers directly, but were not suitable for use in navigation.
Therefore, navigation tables had to be generated separately and the task
was usually given to an agency other than a national observatory or almanac
office.

Celestial navigation on the surface of the earth does not require
very high precision. (The demands of positional astronomy require an
accuracy of an order of magnitude higher than navigation). Traverses from
one area to another is all that is necessary. Within these areas navigation
may be done by dead-reckoning (using landmarks and high accuracy maps),
triangulation, LORAN (or other passive electronic system) or radar. But
these more modern methods are successful because of the extensive astronomical,
geophysical, and geodetic investigations which have been carried out over
large areas of the earth and over long periods of time.

But a detailed knowledge of astronomy or geophysics is not necessary
to do celestial navigation provided the appropriate tabular data is available.
In fact, one can (and does) teach celestial navigation to people with only a
high school mathematics background. The same can be said for the elementary
parts of spherical astronomy. Now when celestial navigation from bodies

other than the earth is considered, one should try to define reference and
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coordinate systems completely analogous to the terrestrial case. Thus,
standard methods tested on the earth can be applied successfully elsewhere
with a minimum of modification.

Although a user of an "astronautical almanac" might not be interested
in the complex calculations of the ephemeris data, others, particularly
those who wish to adapt our program to their own needs, should be familiar
with the basic astronomical concepts presented here. For a detailed account
reference should be made to the appropriate chapter or section of the

Explanatory Supplement to the Astronomical Ephemeris and the American

Ephemeris and Nautical Almanac. Except where noted definitions conform

with those in the Supplement and the recommendations of the Commission 4
of the International Astronomical Union, Sec. 2.1 Coordinate Systems (Chapters

1 and 2 in the Explanatory Supplement). When a solid body rotates in the

absence of external forces, the initial conditions determine the direction of
the rotation axis. A plane perpendicular to this axis is called the equator.
The projection of the rotation axis on the celestial sphere is called a

celestial pole. If the body is gravitationally connected with only ome

other body, the conservation of angular momentum (assuming only central force)
requires that the orbits of the two be contained in the same plane. This
orbital plane intersects the equatorial plane in a line called the line of
nodes. The great circle representing the projection of the equatorial plane

on the celestial sphere is called the celestial equator. The great circle

representing the projection of the orbital plane of the earth is called the
ecliptic. The great circle representing the projection of the orbital plane
of any other object is usually not given a special name. Likewise, the

term "equatorial coordinates' usually is taken to refer to coordinates
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relative to the earth's equator. The ascending node of the ecliptic relative

to an object equator is the descending node of the equator relative to the

ecliptic and is used as a prime coordiante direction. The north pole of the
ecliptic is the projection on the celestial sphere of the perpendicular to
the earth's orbit. This is given by a right-hand rule with the thumb in the
direction of the pole, the forefinger in the direction of the velocity, and
the middle finger in the direction of the center of mass. The north ce-

lestial pole is defined by a similar right-hand rule with the forefinger in

direction of rotation of the body on its axis. The hemisphere (on the ce~
lestial sphere) between the north pole and the equator is called, obviously,
the northern celestial hemisphere. That between the ecliptic and the
northern ecliptic pole can be called the northern ecliptic hemisphere. Now
the ascending node is the node of one plane ("A") relative to another ("B")
where a particle, confined to plane "A" moves according to a right-hand rule,
will travel from the southern hemisphere of plane "B" to the northern hemi-
sphere of plane "B". The descending node requires motion from "northern"
to "southern" motion.

The ascending node of the ecliptic on the earth's equator is given
several gpecial names: the first point of Aries, the vernal equinox, the point
of Aries, or simply the equinox. If a set of rectangular axes are set up

relative to the earth's equator, they are called Rectangular Equatorial

Coordinates. The Z-axis points northward, the X-axis points to the point

of Aries, and the Y-axis points such that XxY-= 2; i.e. right-hand system.
If the sun and the earth were only bodies in the solar system, the
ecliptic and equatorial systems would be equally stable reference systems.

(For observations from a planetary surface, an equatorial reference is more
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convenient than an ecliptic one, since in a spherical-equatorial system,
angular quantities directly analogous to terrestrial longitude and latitude
may be used to describe positions on the celestial sphere.) However, this
is not the case. The moon and planets exert torques on rotational axis

of the earth, as well as its orbital plane. Thus, neither the ecliptic nor
the equator represent invarient plane, There is, however, an appropriate

reference plane called, appropriately, the Invarient Plane. At any specific

instant of time, the ecliptic and equatorial planes can be defined relative
to the invarient plane. Likewise, the ascending node of the ecliptic, the
equinox, is specified uniquely at each time. Frequently one simply speaks

of "the equinox date" when actually the equinox, ecliptic, and equator are
meant to be defined. The equinox and one plane (either ecliptic or equator)
uniquely specify a fixed (prime, fundamental, invarient) reference system, if
an epoch is defined. Thus, it is more convenient to chose an equinox near
the dates concerned rather than be bothered with the transformations to,

and from, the invarient plane.

The differences between the ecliptic and the invarient plane are always
small (vOU5 of arc) with periods of oscillation on the order of millions of
years. Hence the term "ecliptic" is often used to mean the invarient plane.
Because of the large perturbing action of the moon, the earth's equatorial
Plane undergoes much larger changes with somewhat shorter periods of
oscillation. Thus, in order to obtain the coordinates of an object relative
to a moving reference axis (of the earth's daily rotation, for instance) two
correction terms are needed.

Precession is the component of axial motion which has a constant rate

of change when projected on the celestial sphere. Nutation includes all
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the remaining terms (both long and short period) necessary to describe the
residuals of axial motion once precession effects have been removed. If the
object is reasonably rapidly rotating, precession and nutation can be easily
separated.,

However, for slowly rotating objects, such as the moon, it is much
easier to treat precession and nutation as a single perturbation of the axes

called physical libration.

The concepts discussed so far have assumed that there is an infinite
signal velocity, but this is not so. Coordinate definitions must take these
into account. Because the velocity of light is finite, the direction from
which a light ray is received by an object moving relative to an inertial
frame is different from that "seen" by an object at rest in the same frame

and at the same position. This effect is called the aberration of light.

It results because, a coordinate system at the center of the earth, even if
not rotating, is not inertial and a correction for abberation, in principle,
reduces the system to an equivalent inertial frawe. {It should be noted that
correction for aberration only makes the system inertial in a relative sense.
It is not possible to find an absolute inertial system. Thus, in the cor-
rections that follow, one obtains positions as seen for a coordinate system

at the center-of-mass of the solar system. This is called the local standard

of rest. For interstellar navigation, a system which takes into account the

velocity of the stars relative to the local standard of rest must be used

or incorrect rectangular coordinate positions will be obtained.)
It is convenient to consider aberration of light from two standpoints.
If the stars are considered at rest relative to the center~of-mass of the

solar system (see parenthetical statement above), all positions can be
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reduced using a correction term which involves only the velocity of the
observer about the center-of mass. This correction is called the stellar
aberration term. This correction is applicable to situations where only

a comparison with the star background is needed. If a reduction to actual
coordinates is necessary, the total aberration, (frequently called the

planetary aberration) must be taken into account. It consists of two contri-

butions. First if the observer is moving relative to an object at rest

in the inertial system, a contribution of stellar aberration exists for the
observed position. Likewise, if the object were moving and the observer is
stationary (relative to the center-of-mass), the object would "see" a stellar
aberration of the conventional type. If both the observer and the object

have motions relative to the center-of-mass, the two stellar aberrations

combine and give rise to the planetary aberration.

There is another way of looking at planetary aberration. If the earth

is regarded as fixed and a planet moves relative to it, the planet will have
moved during the time it takes the light to reach the earth. Thus, the
apparent position of the planet corresponds to where the planet was at
to - T (where 1 is the light-time),not where it is at to. The difference
in angular position between tg and (to -~ 1) is the planetary aberration.
Now that axial perturbations and aberrations have been briefly discussed, we
return to the discussion of coordinate systems.

A number of special coordinate origins exist.

a) Topocentric - coordinates centered at an observer. In LANS, topo-

centric is reserved for coordinates centered on an observer who is located

on the surface of a body with an independently defined gravitational field.
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b) Stationocentric - coordinates centered at an observer's position,
particularly an observer who is not located on the surface of a body with
an independently defined gravitational field.

¢) Selenocentric - center of moon.

d) Geocentric - center of the earth.

e) Barycentric - center of mass coordinates (body reference not specified.

f) Heliocentric - center of the sun.

Two types of coordinates are used predominately in astronomy - spherical or
rectangular.

There are three main kinds of positions.

a) Geometric -~ the actual, physical positions of the objects (as
required by the theory of gravitation in the case of planets).

b) Apparent - positions at which objects appear to be as a result
of aberration of light.

c) Astrometric - apparent positions which have been corrected so that
the obiect will be referenced to the same coordinate system as used in star
catalogues. The correction term is the stellar aberration minus a small,
nearly constant term.

Mo = A - (R - E)
where A is the apparent place, My is the mean catalogue place, R is the
complete stellar aberration term, E is the small correction term. If A
is the ecliptic longitude and B the ecliptic latitude, then the correction

E terms are

Al = Ke sec B cos (w - A)
AB = Ke sin 8 sin (w - A)
where K = 20%47
e = 0.01675 - 0.00004T
W= 101922 + 19727
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“here T is the number of Julian centuries (36500 days = one Julian century)
since 1900.0. Stellar aberration is contributed from three sources:

1) Annual aberration - aberration due to the motion of the earth about

the sun. Before 1960 corrections for annual aberration were made assuming
a circular orbit for the earth. After 1960, corrections took into account
the eccentricity of the earth's orbit.

2) Diurnal aberration - aberration due to the motion of the earth on its

axis. This is a topocentric correction.

3) Secular aberration - aberration due to uniform motion of the star relative

to the center-of-mass. This aberration is equal to the light-time of the
star times its apparent proper motion. It is customary, as noted earlier,
to omit the secular term in normal astronomical positions since the required
information for evaluation of the term is available only for a small number
of stars. If interstellar navigation is contemplated this term must be
evaluated before transforming to geometric coordinates.

Refraction is a topocentric correction which must be applied if a
reasonably dense atmosphere is present. Since the moon possesses no detecta-
ble 'permanent" atmosphere, LANS does not include corrections for refraction.
These corrections when needed are most conveniently applied to the obser-
vations not the ephemeris. In the computation of rise and set times some
modification for refraction will be required.

Sec. 2.2 Time and Timekeeping (Chapter 3 of the Explanatory Supplement)

In this section, a brief summary of the types of times and their im-
portance to the ephemeris and navigation problem. One may get very involved
with the details of time determination, but this is not the purpose of this

section; only fundamentals will be presented.
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In the earlier days of astronomy it was thought that the rotation
rate of the earth was constant. Over the years, astronomers have come to
realize that the rotation of the earth is much less constant than the
Keplerian motion of the earth and planets around the sun. The dynamics of
the solar system thus provide a set of periodicities which are much more

accurate for timekeeping than the earth's rotation. Ephemeris time is a

time-scale which is the independent argument of gravitational motion. It

is considered a uniform time and so is naturally used as the argument for

ephemerides. It is independent of a planet's rotation and hence cannot be

used, if the highest accuracy is desired, to predict topocentric phenomena

such as transits, rising and setting times unless the rotation rate is constant,
The hour angle (whether local or zero longitude) of the vernal equinox

is known as sidereal time. When ephemeris time is used to generate any

topocentric tables, the sidereal time obtained is Ephemeris Sidereal Time;

transits occur at the Ephemeris Meridian; and the longitude of the observer

is noted as Ephemeris Longitude. Also note that,

LOCAL SIDEREAL TIME = GREENWICH (ZERO LONGITUDE) SIDEREAL TIME - LONGITUDE.

Apparent sidereal time is the hour angle of the true equinox, while mean
sidereal time is the hour angle of the mean equinox of date.

Time which depends on the rotation of the earth is called Universal
Iime. Unlike Fphemeris Time it is subject to variation. Universal time

is a type of Mean Solar Time. If U.T. is used as the independent variable,

the sidereal time is called Universal Sidereal Time; the time reference point

is the Universal Mean Sun; transits occur at the Universal Meridian; and

the longitude of the cbserver is called Universal Longitude. For purposes

of navigation either the "ephemeris" or "universal" times may be used.
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Tor purposes of geodesy, the distinction must be made. In the LANS program,
the basic argument is ephemeris time. If the difference between Ephemeris
Time and Universal Time (AT) is known, then subtabulation routines are availa-
ble. However, Universal Time is only a convenience for terrestrial obser-
vers, since lunar sidereal time, as defined later, uses ephemeris time as
the independent variable as it logically should - lunar rotation, after all,
is reasonably independent of the earth rate. The coordinates produced using
L. T. as the generating argument will be apparent coordinates except for
“he earth where Ephemeris meridians, sidereal times, and longitudes will be
generated. For the earth, apparent coordinates can be generated (not corrected
for nutation) if U.T. is used instead of E.T.

Frequently in astronomy, intervals of mean solar days (ephemeris days)
ere greater than thirty. In order to overcome the inconvenience of month
and year conversions, the concept of Julian days was introduced. Julian Days
begin at Greenwich noon not midnight as do Civil Days. Hence 0.0 U.T. is

-5 Julian Days. The fundamental epoch January 095 1900 E. T. = Julian

(@]

Erhemeris Day 2415020.0.

Sce. 2.3 Establishment of Preliminary Coordinate References for Navigation
Geodetic Exploration on Extraterrestrial Bodies.

In Sections 2.1 and 2.2, some concepts of terrestrial astronomy have
been briefly reviewed. In this section, we apply these concepts to our
particular problem - setting up a navigation ephemeris for the moon or another
planet.

One assumption is made at the outset; it is assumed that for the body
under consideration (i.e. the moon) the rotational motion is not well known

cnough to be able to make a distinction between ephemeris time intervals
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and rotationally defined "universal time" cannot be made so that sidereal

time, meridian, and other terms take on their conventional meanings.

Consider a body whose axis of rotation is instantaneously (or longer)
pointed in a specific direction. Perpendicular to this axis is an equatorial
plane, Relative to the ecliptic plane, this equatorial plane makes a cer-
tain angle i (called the inclination or obliquity) at the line of inter-
section (see Figure 1). If a right-hand rule is used to define the rotation
axis, the smallest angle between the planes is called i and the direction
of intersection where rotation carries a point on the body from the northern

to southern ecliptic hemispheres is called the descending node of the equator.

Coordinates relative to the ecliptic plane are spherical. Ecliptic
(or celestial) longitude, A is an angle measured counter-clockwise in the
plane of the ecliptic from the point of Aries; ecliptic (or celestial)
latitude is an angle B measured perpendicular to the ecliptic plane. The
descending node is at a longitude of §.

Coordinates relative to the equatorial plane are also spherical. Right
ascension (o or R.A.) is measured (from the descending node) counter-
clockwise (right-hand rule) in the equatorial plane. Declination § is
measured perpendicular to the equator. Declination is expressed in angular
units, but right ascension, for convenience, is divided into time units;
360 degrees equal 24 hours; 60 minutes equal an hour; 60 seconds equal a
minute. (One hour of R. A. - 15° of R.A.). The angle (in time units)

between the prime meridian is called the zero-meridian sidereal time. The

difference in angle between the local meridian and the prime meridian is
called longitude. Longitude is positive in a clockwise sense. The north

celestial pole is the direction given by a right-hand rule. Ify and i are
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known it is possible to convert A, 8 into a, § by a trigonometric trans-

formation.

cos § cos a = cos B cos (A - y)
cos 8§ sin a = cos B cos (A - ¥)
sin 6§ = cos B sin (A ~8) sin i + sin 8 cos i

The conversion from stationocentric, geocentric, or selenocentric coordinates
(¢, 8) to topocentric coordinates (altitude, azimuth) is also straight-forward.
The various relationships are shown in Figure 2.

Consider a '"celestial" hemisphere positioned over the equatorial plane.
The radius vector to a "star" intersects the celestial sphere in a "sub-
point." The subpoint makes an. angle § (= Declination) with the equatorial
plane and an angle L.H.A. (= Local Hour Angle) with the local meridian of an
observer. The prime meridian is located at an angle "LONGITUDE" from the

local meridian. The local zenith is on the local meridian and is in the

same plane as the north celestial pole. The zenith makes an angle "LATITUDE"

with the equatorial plane. The relation between local sidereal time and

zero-meridian sidereal time is also shown. The plane perpendicular to the
zenith is called the horizon. A plane through the observer intersecting

the horizon in an east-west line and parallel to the equatorial plane is
called the observer's (or local) equatorial plane and is also shown in Figure

2. Concentric with the observer is the local celestial sphere. The local

equatorial plane intersects the local celestial sphere in the celestial
equator as shown in Figure 3. The descending node §§ of the equator is confin-
ed to the equatorial plane. The angular distance from § to the local meridian
is ST, the local sidereal time. The angle ALT is the altitude of a star
relative to the spherical horizon. The altitude of the north celestial pole

is the spherical LATITUDE. The spherical (or local) zenith is the perpen-

dicular to the horizon (local). The geoid zenith is defined as the normal
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to the tangent to the 'geoid" at the position of the observer. The gravity
zenith is the zenith which goes through the observer, but is parallel to

the gradient of the gravitational field. The three zeniths coincide only

if the "geoid" and the gravity field have spherical symmetry and the center-

of -mass and center-of-figure coincide. The zenith distance is the angle

between the star and the spherical zenith as seen by the observer. The

topocentric right ascension is the angle, measured in the equatorial plane,
from ¥ to the perpendicular (through the star) to the equatorial plane (RA).
The local hour angle (HA) is (RA - ST). The declination (DEC) is the angle
between the star and the equatorial plane. The azimuth of the star is the
angle (AZ), measured clockwise from "north" to the direction of the subpoint
of the star. The conversion between the RA/DEC system and the ALT/AZ system
is accomplished using the so-called "celestial triangle" as shown in Figure 4.
Using the triangle the "law of sines" and "law of cosines" the transformation

equations are:

cos ALT sin AZ = - cos DEC cos HA
cos ALT cos AZ = sin DEC cos LAT - cos DEC cos HA sin LAT
sin ALT sin DEC sin LAT + cos DEC cos HA cos LAT
HA = RA - ST.

It can be seen that the earth equatorial system is obtained if the angle
between the descending node and the point of Aries is zero (3 = 0). The
conversion is simply a rotation relative to the X'Y'Z' ecliptic coordinates
of the XYZ equatorial system through the angle ;3 (see Figure 5). Likewise,
the altitude-8zimuth conversion is a rotation through an angle (90° - LAT)
in the meridian plane.

The ecliptic coordinates of an object are the same regardless of the
equatorial reference used. In the LANS program-reductions, the conversion

is made from X, ¥, Z to X', Y', 2' (Figure 5) to A, B and distance. Then,
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these are converted using spherical trigonometry to an a, 8, distance system.
The a, §, thus obtained, however, do not necessarily correspond to the earth
o, & system (see Figure 6). This double conversion has the advantage that
only the precession of the generalized system has to be computed. The normal
procedure (Astronomical Ephemeris) is to convert directly from earth «, §
to the generalized a, § without finding A and 8. But although this does
involve fewer initial calculations and is more adaptable to logarithmic
computation, it has no advantage for LANS or similar computations where elec~
tronic computers are used. It also requires the precessional computations
for the earth as well as for the other body.

Before the coordinates A, 8 can be found, a transfer of origin is
necessary. The available planetary theory tables (ephemeridies) are helio-

centric, rectangular (earth) equatorial coordinates, epoch 1950.0. The

positions of the sun are 1950.0 geocentric equatorial coordinates, which
if negated give heliocentric coordinates of the earth, The positions of
the moon are also 1950.0 geocentric (earth) equatorial coordinates. Since
all of these coordinates are equatorial, rectangular coordinates, a change

or origin can be accomplished rather easily. The vector relations are shown

in Figure 7.

1f R = geocentric vector of sun, p = seleocentric vector
of sun, r = geocentric vector of moon, r; = gelenocentric vector
of planet, ;b = geocentric vector of planet,
;; = heliocentric vector of planet,
(-5) = heliocentric vector of moon (or station),
;;m = heliocentric vector of center of mass of solar system,
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thus a reduction to a center-of-mass system and to a selenocentric or

stationocentric system is expressed by the vector relations:

T+P =R ... (D)
T e ’R‘ = ';v e (2
Station p P (2)
e =ry .....(3)
‘;-E = (—-p-) 0-.00(4)
Center (—p)— rcm = (-p)cm '-0-0(5)
of - -
Mass R+ rop = Rep cree.(6)
r, - Tep = (;;)cm veeeo(7)

These transformations require no parallax corrections. However, the positions
of the stars do require a correction for stellar parallax if the '"base-line"
orbit size is changed. For the moon, the stellar parallax corrections are
nearly negligible except for the nearest stars. However, the generalized
concepts used in LANS require that it be included if the heliocentric dis-
tance is much different from unity. Figure 8 shows the three main parallaxes
of concern in astronomy and the base-lines which are used to measure them.

In LANS, a lunar horizontal parallax correction is applied, if necessary,
before the final topocentric coordinate conversion. The base-line in this
case is the station center-of-mass radius vector.

Figure 9 illustrates the aberration of light as discussed in some detail
in Sec. 2.1. Consider two bodies moving relative to an inertial frame origin
(center-of-mass). From a classical standpoint, a star is considered fixed
relative to the center-of-mass. Then as a photon travels in a straight path
relative to the center-of-mass, a telescope on one of the moving bodies has

to be tilted so that it can "catch" the photon. Unless the telescope is



~29-

tilted, the photon "collides" with the side of the tube. Since all photons

are affected, the stars all appear 'tilted,” hence stellar aberration. It

results from motion of the observer. The planetary aberration component ¢g

is the difference in ray angle due to the object motion. If ¢p is the

stellar aberration component, then the total planetary aberration ¢ is

¢ = 0g + op = (relative tangential velocity)
(velocity of light)

Secular aberration is not shown. The stellar aberration is more correctly

termed annual aberration, if the orbital motion of the observer is assumed

circular. In LANS, stellar aberration is computed using numerical
diffentiation of the observer's coordinates and planetary aberration is
computed using interpolation back to an epoch (to - 1) where T is the light-
time.

The rotation rate of the observer is used to compute the diurnal
aberration, if this correction is necessary. For the moon, this correction
is negligible, but the capability is included for generality.

In Sec. 2.1, it was mentioned that the combined effect of precession

and nutation was called the physical libration. This is not to be confused

with the optical librations which are demonstrated in Figure 10.

Consider for the moment that the body (moon) rotates at exactly a uni-
form rate. A prime meridian then sweeps out equal areas and equal angles
in equal times. Suppose, however, that the body is in an elliptical orbit
about some center-of-mass. While the body rotation sweeps out equal angles,
the Keplerian motion certainly does not, but only sweeps out equal areas.
Of course, if the orbit were circular, the rotation and revolution would be

exactly synchronized. The difference in angle between the radius to the
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center-of-mass and the radius to the center of the ellipse is called the

longitudinal libration (optical). If there are small variations of rotation

rate, these show up as physical longitudinal libration.

Suppose now that the body rotation axis is not parallel either to the
terrestrial pole or to the perpendicular to the orbital plane. Thus the sub~
earth point will be alternately above and below the lunar equator. These

are called (optical) Latitudinal Librations. The physical latitudinal

librations are principally due to nutation of the body axis. It should be
noted that because of precession, the long-term oscillations in longitude
are not strictly periodic.

The lunar physical librations have recently been studied by Eckhardt
(1965) at the Air Force Cambridge Research Laboratories. Dr. Eckhardt kindly
provided us with a grid of libration constants over a +30 range around the B, Yy
best values now available, especially for use in LANS. The current version
of LANS uses libration constants which are considered to be the best current-
ly available. Although only 22 coefficients are known, there is room for
45. This was done so that a single or a few constants could be changed or
added without disturbing the program itself. If the "best" values for the
moments—-of-inertia are incorrect, an entirely new set of constants may be
generated using the auxiliary two-dimensional interpolation program. The
storage requirements for such a program internal to LANS is prohibitive for
the general case.

The Eckhardt solutions are for the forced librations only. The solutions
of the "free-oscillations" have not been included, since they can only be
evaluated empirically. Likewise, long-period forcing terms are not included

although they probably do exist. Not enough empirical evidence for



~-32-

free-librations or long-period terms is available. If and when coefficients
are available, it will be a simple matter to include them in LANS. ALL the
necessary auxiliary angular arguments are already available internally.
Short-term corrections to inaccuracies in the libration constants may be
obtained from observation using the empirical data reduction program in
LANS. The corrections, however, do not indicate which periodicities are
present and which are not. Such a study to find the long-term and free
librations has been proposed as a contract extension of this investigation,
but has not yet been taken up in detail.

Figure 11 illustrates the lunar physical librations. These librations
are computed under the following assumptions:
a a) The luanr rotation rate is uniform and constant, to the first
order. The lunar prime meridian has a constant angle with the mean longi-
tude of the moon.

b) The lunar precession has the same period as the precession of

the line of nodes of the orbit and, in fact, the equaterial line of nodes

coincides with the orbital line of nodes.
c) The mean axial inclination of the moon is constant at least to

first order.

The above constitute Cassini's Laws of Rotation. These are only true

to the first order. In a physical sense then, the (physical) librations
represent perturbations to ﬁ; the mean rotation rate, to'f, the mean axial
inclination, and to U, the mean longitude of the descending node of the
equator. Since § has a known secular part, the precession, it is usually

removed before the physical librations are solved for y. Thus if W', I',
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and U' are the instantaneous values, these are assumed only to be a small

amount different from ﬁ, f, E Thus

Wo=W 4+ AW
I'=1 +4i
' =0 + Av

These perturbations are not convenient for computation of coordinates,
so another convention is used.
0 = longitudinal libration

p = latitudinal libration
T = rotational libration

The relationships of the small angles are shown in the diagram (Figure 11)

and are covered in detail by Eckhardt (1965).
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Sec. 3 SPECIFICATION OF THE LUNAR PROBLEM

In the proceeding sections, we have discussed the problem of
astronomical ephemeris data from a generalized standpoint. In this
section we concentrate on the problem of celestial navigation from the
lunar surface.

The calculation of apparent selenocentric object coordinates with
complete aberrational and parallactic corrections from heliocentric or
geocentric data is straight forward, although lengthy. The appropriate
transformations are performed in the basic program of LANS in accordance
with the recommendations for ephemeris calculation as outlined in the

Explanatory Supplement to the Astronomical Ephemeris (1960). Likewise,

the topocentric coordinates and corrections have been computed with
notation and convention similar to those used on the earth. A conscious
effort has been made to maintain as close analogy with the problem of
celestial navigation on earth as was possible. Some differences do re-
main which are discussed in this chapter.

The lack of a permanent or appreciable atmosphere on the moon elimi-
nates refraction as a factor in the lunar navigation so this was not
considered. The Explanatory Supplement has a short section (2E), but
includes a number of more important astronomical references.

The Astronomical Ephemeris for the earth contains the following data

for the mean lunar equator, (quoted from the Explanatory Supplement):

a) 1 = the inclination of the mean equator of the moon to the true
equator of the earth.

b) A = the arc of the mean equator of the moon from its ascending

node on the true equator of the earth to its ascending node on the ecliptic

of date.
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¢) Q' = the arc of the true equator of the earth from the true
equinox of date to the ascending node of the mean equator of the moon.
For the purposes of a precise lunar ephemeris these quantities are not
satisfactory for a number of reasons.
1) These are derived assuming Hayn's approximate mean inclination
of the lunar equator to the ecliptic of I = 1°32-
2) These do not include nutation of the lunar pole.
3) They refer to the true equator of the earth not the 1950.0
equator.

The "Ephemeris for Physical Observations" of the Astronomical Ephemeris

is somewhat better, but also has shortcomings,

Hayn's values for the mean lunar equator and the physical librations
constants were used to derive o, 1, p and then calculate:

a) Selenographic longitude and latitude of the earth.

b) Selenographic position of the sun.

The calculations are discussed in the Explanatory Supplement pp. 316-326.

While these methods are reasonable satosfactory for an earth ephemeris
where only 07001 accuracy is needed, the Hayn (1907) values adopted are
probably not the most accurate. In addition, a number of approximations
and auxiliary quantities are introduced which are not required for elec~
tronic data processing. We have therefore reformulated the problem.
Solutions for lunar nutation have been recently derived by Eckhardt
(1965) using direct numerical integration of the equations of motion.
Hayn (1907), however, did not have a modern high-speed computer and so his
investigations involve a number of approximations. Kozlel (1962), Jeffreys

(1961), Watts (1955), and Goudas (1966)have made some more recent
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determinations of parameters directly or indirectly influencing the
libration coefficients. The review article by Koziel (1962) should be
consulted for a discussion of the work previous to 1958. The notation
used by Hayn has been retained. The arguments used for the computation
lunar librations are the same as those used to compute the nutation of
the earth's axis, namely 1, 1', F, D, and Q.

1=1L- = mean anomaly of moon

1' = L' - ¢' = mean anomaly of sun

F = L - R = mean nodal distance of moon

D=L - L' = mean elongation of moon from sun

L = mean longitude of moon, w = argument of perigee

L' = mean longitude of sunm, w = argument of perihelion

Q = ascending node of the moon.
Eckhardt (1965) gives expansions of ¢, p, T, and values of I for various
values of moment of inertia parameters. He has kindly supplied tables of
libration constants especially for LANS. An interpolation scheme allows
computation of the coefficients. These with subsequent corrections, if
necessary, can be entered into LANS from outside.

The moment of inertia parameters used for coefficient interpolation
are a, 8 and y. But

y=-8(1 - £) £f=-a/8

8o only two values 8, y or B, f need be specified. The parameters a, B8, Yy
are defined in terms of the principal moments of inertia A, B, C by

aa(B—C)/A BBQ’_A YaB-A
B C

The tables provided by Eckhardt are in terms of B and f over the ranges
0.59 < £ < 0.65

0.000 60 < B < 0.00066
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Now the best value of f Jeffreys(1961) is f 7 0.639 +0.014; that

for y 1is +0.000 2274 4+0.000 0088 which results in a B of 0.000 637. Thus,
the values of f and 8 are still uncertain and over much larger ranges
than the quoted probable errors seem to imply. There is considerable evi-
dence which indicates however, that 8 and f are within the ranges stated
above. For initial table generation tests B = 0.00064 and £ = 0.64 where
chosen.

When the Lunar Orbiter data analysis 1s complete very accurate values
of B and f should be available and the libration coefficients may be deter-
mined with more confidence (Michael and Tolson, 1965). At present this
is the best that can be obtained. We feel that the values used are more
realistic than those used in the Russian ephemeris (see section 1) computed
by Yakoukin, Demenko, Miz' in 1964, but more data is needed to establish
this. After the libration constants are specified it is possible to obtain
the apparent axial coordinates as seen from the center of the moon. Thus
apparent lunar right ascension, declination can be found for any object
whose geometric (gravitational) ephemeris is available. As a consequence
of the correction for librations, it is possible to find lunar apparent
sidereal time, unlike terrestrial time, is relatively non-uniform even over
relatively short intervals. One could, as in the case of the Russian
ephemeris, define a uniform sidereal time for the moon, but we found this
of no practical value since ephemeris is a uniform time which is well-known
and presumably will be available to users of lunar navigation tables.
Likewise, no uniform lunar solar time is defined or used.

If the sun is treated as a planet, the zero longitude sidereal time

and hour angle of the sun are obtained in sn intermediate step in the LANS
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topocentric conversion procedure. They may be outputed, if desired, by
setting an option. These are apparent times and are non-uniform. Once
zero-longitude sidereal time, right ascension, and declination at the
center of the moon have been found, the topocentric conversion can be made.

The topocentric conversions are really a geodetic astronomy problem.
Because of the rather high degree of symmetry which the gravitational field
and "geoid" of the earth possess, topocentric corrections accurate enough
for most purposes assume that only the lines of longitude are not great
circles. These are usually considered to be ellipses. It is also assumed
that the center-of-mass and center-of-figure of the earth coincide.

In the case of the moon, there are several complications:

1) The center-of-mass and center-of-figure of the moon do not coin-
cide.

2) The geoid and gravity field of the moon are too irregular to
permit accurate description of topocentric corrections by assuming simple
gecmetric shapes.

3) Local Deflections of the gravity vertical may be considerable,
but no data 1s yet available on these.

Complications (1) and (2) are taken into account in LANS, but only estimates
of (3) can be given at the present time. These will be discussed later

The center-of-mass is origin for astronomical selenocenric coordi-
nates. |
i1t is also the origin for selenocentric coordinates derived using the
gravity field. The center-of-figure, however, is the coordinate origin

for geodetic studies of the shape of the moon. It is also the origin
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for the normally defined spherical longitude and latitude system. If the
two centers are not coincident corrections must be made.

In LANS, topocentric corrections are made relative to the center-of-
figure system. Corrections for horizontal parallax are made first by a
translation to the center-of-figure, then to the surface.

The lunar geoid and gravity field have been investigated using spheri-
cal harmonics by Goudas. In a recent review article (1966), he derives
expressions for an eighth order geoid; then he derives, on the assumption
of a homogeneous mass distribution, a fourth order spherical harmonic
expansion for the lunar potential field. For a number of the coefficients,
the values depend strongly on the data used to derive them. These represent
the best data available at the time of compilation of LANS so they have
been incorporated into the basic program. These functions are generated
as functions of geodetic radius and spherical longitude and latitude
(center-of-figure). However, only the fourth order expansion of the geoid
and 4th order gravity field give reasonable values.

When Lunar Orbiter data becomes available, it is very likely that
the lunar gravity potential will be generated as a function of the coordi-
nates relative to the center-of-mass. If this is true, setting an option
will make the conversion from center-of-figure to center-of-mass before
generating the gravity parameters.

In the problem of celestial navigation, a number of methods of solution
utilize altitude - azimuth reference systems. On the moon, there are three

topocentric reference systems which might be useful. The spherical system

uses the spherical radius vector at the given LONGITUDE/LATITUDE for the

zenith reference. The surface system uses the normal to the geoid for the
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reference. The gravity system uses a "smoothed" gravity vector for the
y

zenith reference.
In practice, none of these systems is available to an observer with-
out some knowledge of local conditions. On the surface of the earth it

is usually assumed that the surface system and the gravity system coincide.

At sea, this is rigorously true since for a fluid, the local shape is
determined by the gravity field. But on the moon there are no fluid seas.
If there were any "dust" maria on the moon, these could be used in an
analogous manner to terrestrial seas, but evidence now appears to indicate
that the maria are definitely not "dust-bowls." The maria, however, do
appear to be relatively "flat." Horizon references might be defined for
these areas, as can be done in plains or deserts (to a limited extent) on
the earth, but the precision will be lower than for a gravity reference.
A surface reference system, however, can be used to determine relative
slopes of terrain.

The spherical system is the standard astronomical reference. It is
mathematically much simpler than the gravity or surface system, but it
is not practical for accurate navigation. A gpherical system referenced
to the center-of-mass can be obtained upon option from LANS, but is not
used for computation.

The most practical system available for navigation is one using a

gravity reference. Although the gravity vector is more constant in direction

than the normal vector to the "horizon," it is subject to local variations,

which are called deflections of the vertical. (It should be noted that

deflections of the vertical occur for "geoid" reference systems as well

as for gravity ones).
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For our purpose here, we define a deflection of the vertical as
being made up of two components:

a) general deflection of the vertical is the angular difference

between the spherical zenith and either the geoid zenith or the 'smoothed”
gravity zenith,.

b) local deflection of the vertical is the "local" stochastic angu-

lar difference between the true local gravity and surface zeniths and
their computed '"smooth' values.

The total deflection 1s the general plus the local deflection and
represents the deflection of the true zenith from the spherical one. For
the moon, the general deflections can be rather sizeable, much larger than
for the earth and are very non-linear. It can be shown also that the maxi-
mum local deflections can also be rather large (see later section).

In LANS, altitudes and azimuths of objects can be referenced to a
number of different systems upon option.

A. SPHERICAL - CENTER-OF-FIGURE

B. SPHERICAL - CENTER-OF-MASS

C. TRIAXIAL ELLIPSOID -~ CENTER-OF-FIGURE

D. TRIAXIAL ELLIPSOID - CENTER-OF-MASS

E. GENERAL HARMONIC SURFACE - CENTER-OF-FIGURE

F. GRAVITATIONAL POTENTIAL FIELD - CENTER-OF-MASS.

If observations are made relative to a true horizon or gravity gradient,
the longitudes and latitudes obtained would not be, in general, the spheri-
cal center-of-figure ones. The longitudes and latitudes obtained after the
stochastic deflection of the vertical is taken into account are called

the pseudo coordinates of the position. In LANS, corrections to convert

pseudo coordinates to spherical coordinates can be generated as orthogonal

polynomial expansions using pseudo-coordinates as arguments. Of course,
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there is no way to go from observed coordinates to pseudo coordinates as
yet. This would require information, not presently available.

Since deflections of the vertical can occur perpendicular to the
meridian as well as along it, LANS Basic Program outputs the deflections
as deviations of latitude and longitude. Because the lines of longitude
tend to converge, the numerical values of the longitude deflections get

larger toward higher latitudes. The actual angular deviation is

46 = Y(ALat)? + ( Long)? cos? Lat

where A6 = general deflection of vertical.

The local, stochastic variations will be discussed in detail in
section five.

Although a simple orbit calculation routine is included in LANS,
the highest accuracy can only be obtained if the best heliocentric ephemeri-
des for the sun, moon, earth, planets and stars are available for use.
The U. S. Naval Observatory Nautical Almanac Office is the source of such
data in the United States. They have available, on tape, the following
required ephemerides and their published sources, if any.

a) Geocentric positions of the sum, rectangular, equatorial, 1950.0
coordinates (Astronomical Papers, Vol. X1V).

b) Geocentric equatorial, rectangular, 1950.0 coordinates of the moon,
in earth radii, (U. S. Naval Observatory Circular, No. 91).

c) Heliocentric planet positions, equatorial, 1950.0, rectangular
coordinates, (Astronomical Papers XII, XV (Part III), U. S. N. 0. Circulars
90 and 95, Planetary Coordinates (1960-1980).

d) Stars 1950.0 mean positions (FK3, FK4, Apparent Places of Stars

(after 1960),
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e) Center-of-Mass of the Solar System (Astronomical Papers XIII
V). |

The (e) entry is not available on existing tapes and for the purposes
of LANS, it might be easier to generate the data rather than punching the
cards to make the tape. Here are the necessary formulae. If X,, Y., Zo
are the heliocentric coordinates of the center-of-mass, Mp = the planet
mass in terms of the solar mass, and xp, yn, 2n are the heliocentric
coordinates of the nth planet, then the heliocentric distance of the center-

of-mass is given by

Xo = & ro¥n
(1 + Ip,)
YO = __‘E.n}_t.l._._.
1+ Zmn)

= InXn
Zo =1 (1 + Ingy)

A table of m, values as well as other gravitational constants may be found

on p. 493 of the Explanatory Supplement. An Auxiliary Program in LANS

calculates the center of mass position if Xp, yn, 2n are knowm.

It was not possible during the development of LANS to fabricate any
input data tapes, because master tapes were not available to the investi-
gators and because it was not possible to predict the I/0 modes that
ultimately will be used with LANS. Present input for the basic program
is by punch cards. OQutput is line printer and punch cards. Since I/0

is basically a programmer's problem and not a scientific one, only the I1/0

necessary for testing has been considered. Tape and disk I/0 are left to

the choice of the users.
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Finally, two further items are included. First, in outline form,
the main LANS programs and their general functions are summarized.
Secondly, also in outline form, the auxiliary programs are summarized.
A detailed flow chart of the LANS BASIC Program is presented in Appendix 1.

Because the Empirical Correction Program and Orbit Program are
adaptations of previously existing programs no detailed explanations of
these will be given. This is also true of the auxiliary programs. These
were developed for testing purposes. Their external functions are not
included in the contract scope, but they should prove useful for future simu-
lations.

Lunar data and constants used in LANS not referenced explicitly have

been obtained from Allen (1964) or from the Explanatory Supplement (1960).

Numerous other references can be found in each as well as the review by

Goudas (1966).
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A. MAIN PROGRAMS -~ LANS.

1) BASIC PROGRAM (Al)

a. STATIONOCENTRIC COORDINATES.
b. TOPOCENTRIC COORDINATES AND PHENOMENA.
c. TOPOCENTRIC PSEUDO COORDINATE TABLES.

2) EMPIRICAL CORRECTION PROGRAM (A2)

a. DETERMINES LONGITUDE/LATITUDE from observation.

b. DETERMINES SPACEDRAFT ORIENTATION from observation.

c. PERFORMS STATISTICAL ANALYSIS OF OBSERVATIONS.

d. PERFORMS TIME CORRELATION ANALYSIS OF NON-RANDOM RESIDUALS.

e. DETERMINES SHORT TERM SECULAR OR PERIODIC EMPIRICAL CORRECTIONS,
IF RESIDUALS ARE NON-RANDOM.

f. CORRECTS OBSERVED LONGITUDE AND LATITUDE ASSUMING LOCAL
DEFLECTIONS NEGLIGIBLE.

3) GAUSS ORBIT CALCULATION PROGRAM (A3)

a. FINDS SINGLE SET OF ORBITAL ELEMENTS USING THREE POSITIONS
OVER LONGEST TIME INTERVAL.

b. FINDS MULTIPLE SETS OF ELEMENTS FROM OBSERVATIONS TAKEN THREE
AT A TIME.

c. MAY BE MODIFIED TO OUTPUT EQUATORIAL ELEMENTS Ay, Ay, Az, By,
By, Bz instead of a, e, w, i, Q.

B. AUXILIARY PROGRAMS
1) POWER SERIES LEAST-SQUARES - Upon Option will take ORBITAL ELEMENT DATA

from (A3) and supply coefficients for (Al), if time-dependent orbital
elements are used.

2) ORTHOGONAL POLYNOMIAL SURFACT FIT - Takes differences between spherical
longitudes/latitudes and pseudo coordinates as generated by (Al) and
generates the required polynomial coefficients needed in (A3) to make
corrections back to spherical ccordinates.

3) LIBRATION COEFFICIENT INTERPOLATION PROGRAM - Input of appropriate B and
f values gives a punched deck of libration coefficients.

4) CENTER-OF-MASS GENERATOR - Takes planetary coordinates of all planets and
finds center-of-mass of Solar System.

5) CALENDAR DATE - JULIAN DATE CONVERTER.

6) NEWTON INTERPOLATION SCHEME.
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Sec. 4 Empirical Test Programs and the System Operation

As mentioned previously several test progrmas were developed for use
with LANS - BASIC Program. It is beyond the scope of report to explain
these in detail. The methods used are standard. The following references

are recommended.

1) Empirical Test Program (A2)

(a) Statistical Analysis - Hafley, Wilkinson, Fardo (1964)
(b) Time Series Analysis - Korn and Korn (1961)

2) Orbit Program - Dubyago (1961) (A3)

3) Other programs which are modifications of standard Burroughs Library

routines are documented within the program listings. (see sec. 7).

(A) Ewmpirical Data Program
Of course, the empirical test program actually requires real data for
meaningful results. Here is a description of its operation.
1) Observed altitudes/azimuths are inputed along with stationocentric
object coordinates.
2) Upon option either the longitude/latitude or appropriate coordinate
constants are found by least-squares. The least-squares solution uses

"normal" trigonometric transformation equations.

The longitude/latitude option is called MOON. Using option space/craft,

coordinate constants can be found either in the case of a rotating space-

craft or a stabilized spacecraft. For a rotating spacecraft two modes can

be used.

a) Time-dependent observations of a single object options SINGLER

and HOLDER (see section 7) must be set true (1).
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b) Observations of a number of objects. Option HOLDER MUST BE FALSE.

Option SINGLER SHOULD BE SET TRUE. (1), if residuals are to be analyzed.
For a non-rotating spacecraft, Option HOLDER MUST BE SET FALSE. Inmput
of observations of a single object will not process correctly. Option
SINGLER SHOULD BE SET TRUE, if residuals are to be analyzed.
Note, however, although ALPH, DELT are used as label names, the coordinates
input for the spacecraft option may either be earth equatorial coordinates
(o, 8) or ecliptic (A, B). The constants 8§, €, etc. will then refer to that
plane, In either case, the equatorial spacecraft constants that are obtained
will enable a transfer from altitude/azimuth to the earth equator (a, §) or
ecliptic coordinates (B, A) to be made.
3) The least-square coefficients are then used to determine altitude/azimuth
residuals.
4) The residuals are then tested for correlations with three quantities

a) time

b) altitude

c) azimuth.
5) A cross-correlation check is then performed.
6) 1If the data is non-random then the data is fit by least-squares to either
a

a) power-series polynomial or a

b) fourier series
7) Upon option, correction formulae (orthogonal polynomials) with arguments
of spherical longitude/latiutde can be used to correct derived coordinates
to spherical longitude/latitude. The coefficients for these polynomials are
generated from the orthogonal surface fit program using data given by the

basic program.
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(B) Orbital Element Program
1) Observations of Planetary objects are input.
2) The Gauss method is used to solve for orbital elements or sets of orbital
elements.
3) 1If a single set of elements is desired then these can be used directly
in the LANS Basic Program.
4) 1If several sets of elements are obtained, these are used as data into
the power series least-squares program. The output of the least-squares is

then input to LANS Basic Program.

(C) A Suggested System Operation

In the previous sections of this report, we have discussed the most
general aspects of LANS. We have pointed out that LANS can be modified to
fit situations other than that of lunar surface navigation. In section 3,
the lunar problem was outlined, but no specific mode of operation was
suggested. But a number of data exchange and interchanges between programs
and areas of study are necessary before LANS can be used to the fullest
advantage. At the end of section 3, the LANS programs were listed. Using
the notation of that listing, a general chart of data flow is shown in
figure 12. It can be seen that LANS has many interactions with observational
research as well as theory. Thus, although the necessary computer programs
have been developed specifically in this contract, much work on the necessary
parameters and constants is needed before celestial navigation can be done
accurately from the lunar surface (see Sec. 6 for estimates of present
uncertainties). Assuming the necessary data input has been obtained, one

possible use for the system will be described.
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Suppose a serles of photographs have been taken from the lunar surface
including the horizon and some celestial objects. The local gravitational
vertical is known and all of the angular measurements including that of the
horizon have been referred to this vertical. The zero azimuth direction is
arbitrary.

The approximate coordinates of the camera position are input to LANS-
Basic Program along with the brighter planet and navigation star (heliocentric)
data over the required interval.

The selenocentric orbital elements of an orbiting instrument module are
also put in LANS Basic. The specific dates and times (U.T.) of the photo-
graphic exposures are put in the Julian date converter. The corresponding
dates and the Universal Time ~ Ephemeris Time correction are input. The
appropriate options are set and approximate - altitudes/azimuths and calendar
dates are obtained. These are compared to observations and identifications
made.

Another option in LANS Basic is set and, for increments of longitude
and latitude around the approximate coordinates, a data deck giving the
corrections to the center-of-figure, spherical coordinates is obtained. This
deck is then put into the orthogonal fitting routine. The resulting deck
from the orthogonal fit is then put into the empirical data program.

Another option is set and selenocentric coordinates (center-of-mass)

at the appropriate times are obtained and input into the empirical data
program along with the altitude/azimuths (referenced to the gravitational
zenith) obtained from observatioms.

The empirical data program is then set and the spherical apparent

(pseudo coordinates) longitude/latitude are obtained by least-squares as
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well as the appareat azimuth of the north point. The altitude/azimuth
residuals are then analyzed by autocorrelation techniques. (Suppose a
periodic trend is found). The empirical Fourier coefficients obtained are
then used to correct the observations. The corrected observations are then
put back in and a new longitude and latitude are obtained. The residuals

are tested again. If they are random, another option is set and the apparent
camera position is corrected back to a spherical, center-of-figure system.

If desired, the entire process can be repeated using the horizon as
a reference. But suppose some of the exposures show instrument module images.
Using standard formulae, the altitudes and azimuths in the gravity system
can be transformed to a center-of-mass system in right ascension and
declination, (Pseudo-coordinates should be used for longitude and latitude.
Any coordinate (systematic) effects, including deflections of the vertical,
should be removed).

The right ascensions and declinations and other appropriate coordinates
are entered into the orbit calculation program. A set of orbital elements
are obtained. If these are significantly different from previous ones then
local variations of the vertical may be contributing.

Without going into detail, the satellite images or a series of exposures
of circumpolar stars may be used to derive deflections of the vertical. The
path of the moon's north celestial pole relative to earth 1950.0 equatorial
coordinates can be obtained by option from LANS Basic. The local "land"
slope can be obtained as well.

Other examples could be given. But until the instrumentation and
methods to be used are worked out more completely, these serve no useful

purpose in this report. In anticipation of a number of uses for LANS, a
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number of additional options were included, but not mentioned above.

The program listings should be consulted for further details.
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Sec. 5 ESTIMATES OF LOCAL DEFLECTIONS OF VERTICAL ON THE MOON

One source of error in lunar surface navigation is the gtochastic
local deflection of the vertical. We have made no attempt to derive
rigorous theoretical formulae for this, since in practice it must be de-
termined empirically. However, we may put limits on the expected contri-
bution using some simplified models.

Moulton (1914, p. 118) has stated that the deflection of the vertical

A due to a hemispheric "bump" is

3
can & = 210D L 1/2 01¥o” o, N ..., (1)
no2R-01Y o2R

where R is the radius of the moon, r is the height of the 'bump", o is
the mean density of the "bump', oy is the mean density of the sphere. For
a "hole" -01 = 0‘2.

It can be shown that the deflection of a buried spherical mass is

tan ) = Y0302 - o014 fr.3(oy - 01)x )

where d is the depth of the mass ro the radius of the radius of the mass,
x is the distance along the surface from the observer of the mass, 0 is
the mean lunar density and 02 is the mean demsity of the buried mass.

For a mass near the surface d = r, and for an observer near the edge

of the mass with ro <R, x = 1

(02 - 91) Yo 92 1o
tan A = 2.8 gy ®*x35 X ceeen(3)
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For a mountain approximated by a 45° cone, the mass is reduced by

1/2 so
tan A ~ 1/4 1P e ()
o2R
For o1 = 07
tan A v 0.25 (h/R) ereeo(5)

The limits to a conical mountain of any slope a can be found by finding the
deflections for an inscribed hemisphere and a circumscribed hemisphere.
For a mountain of height h, slope a, and an observer x distance from the

mountain base, it can be shown that

3
{-a.'* b...s.'.'_ﬂ_aﬁ,.._. <to‘,.,}<tf h {am;g ...(6)
- R(h‘tamo&-lrl) l‘:r(h‘éamxu)R

or at x =0

I o [/ B
}_‘3: L:?\ RlAL <t0nA< L -'- W
P CoS &0 ;a j:l

For small slopes or for craters approximated by shallow inverted cones,

! gzl—- EZ. fSaVWCK. < ;\ ‘<: % Sz:j 12_ .(8)

5T

Consider the following crater model. A central peak X, from the outer base

-

2 O
A

with slope a3 the rampart of the crater walls are a distance Xj from the
central peak. The immer crater walls have a slope of a; and the outer walls
slope o). X2 is distance from the crater wall-central peak intersection to

the central peak. Then

‘Luf‘. \ M é "'.an r'e é: —L(\h ) Fyve A

"é’an ’\")ax ,_\___ Oy S, Xea tant R 9)
<.
r( < (\CDSO;m
t&'kY‘ \ ‘\.."" ")’ Xo Lan 1X‘ 'tahmls'ﬂ(ﬁ
/ ﬂﬂ 4 2 25:— R CoSu 2 ot
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For small and equal slopes
Lo L o543 T
Fan A g e T — -(—Xoo( 2N L D% 6.0
v

For "average" craters a v~ 0.2, Xy = 0.1 x,, Xy = 0.9 x
2 0r *1 0

and ) ~. ..2. GZ x’; (0 O’-i') cee.. (11)

We do not claim that these equations can be used to calculate actual
deflections, but they can be used to evaluate limits of accuracy. Four cases

have been considered and are enumerated in the following tables.
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a) For small conical craters or hills (outer slope * 0.2) at edge

Height or depth max IA] min {A
500 ft. 10" 2"
1000 ft. 20" 4"
2000 ft. 40" 8"
4000 fc. 80" 16"
1l1mi. 102" 20"

2 mi. 204" 40"

b) For large craters with central peaks and outer slope 0.2

radius max IAI min ]AI
1 mi. 100" 4“
2 mi, 200" 8"
3mi. 300" 12"
4 mi. 400" 16"
5 mi. 500" 20"
10 mi. 1000" 40"
30 mi. 3000" 120"
50 mi. 5000" 200"

100 mi. 10000" 400"

¢) For buried spherical iron mass just touching surface and observations

a radius away from the surface tangent

zadius Ial
10 ft. 2"
50 ft. 9"
100 ft. 18"
500 ft. 90"
1000 ft. 180"
1o, 900"

d) For fairly steep mountain "~ 45°

radius max lAl min lkl

500 ft. 10" A

1000 ft. 20" 14"
1 mi. 102" 70"
2 mi. 200" 140"
3 mi. 300" 210"
4 mi. 400" 280"
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Sec. 6 ACCURACY OF EPHEMERIS DATA FOR THE LUNAR
SURFACE AS GENERATED USING LANS

In the previous section we have attempted to find by several approxi-
mations, the lower limit to the stochastic component of the deflection of
the vertical. The situations considered are oversimplified and experimental
results must be obtained before an estimate of how large an uncertainty is
due to random variations of the vertical. On the basis of the numbers derived
in Section 5, estimates of this error will be mentioned later in this section.
First, however, some estimates of other contributing uncertainties must be
made.

Because of the large number of transformations involved in LANS it has
been virtually impossible to do rigorous error analyses of major parts of
the system. Many constants employed are not "universal' and are poorly
known. Hence, a real test for this system is to perform accurate obser-
vations from the lunar surface and compare them with the computations. How-
ever, since no rigorous error analysis can be performed, the test program
results obtained by variations of sensitive quantities must be used. It
should be stressed that the shortcomings are numerical only. No approxi-
mations were made that would make LANS system or process limited, at least,
for operations that involve non-relativistic mechanics. We have concluded

that for the Basic Program, LANS is data-limited. On the basis of the data

available at the completion of this final report and expected future refine-
ments, we have attempted to make estimates of various sources of error.
The contributions listed are uncertainties of topocentric altitudes/azimuths

referenced to a particular zenith and center.
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a) Positions at center-of-mass of moon.

Best Heliocentric Data + 07005

Average Orbital Elements + 010

Preliminarxy Orbit +1070
"Best'' Operational Estimate + 0705

b) Center-or-Mass to Center-of-Figure (Goudas, 1966)

Maximum:
Estimated Error (current) + 5'
Estimated Error (Post-orbiter) + 30"
Estimated Error (Post-Apollo) + 0V1
"Best" Operational Estimate + 40"

Note: The correction here is not a parallax error, but is a systematic
deflection of the vertical.

c) Libration Constants (Eckhardt, 1965)

Maximum Error Due to 8, f Uncertainty + 30"
Estimated Error (Post-orbiter) + 170
Estimated Error (Post-Apollo) + 0V1

"Best" Operational Estimate + 10"

d) Surface Shape ("geoid")(Goudas, 1966, Bray and Goudas, 1966).

Maximum (Triaxial ellipsoid) + 50"
Maximum (8th order Expansion) + 30" (1)
Maximum (only 4th order coefficients)

a. Polar Regions + 2!

b. Equatorial Regions + 30"
"Best" Operational Estimate + 30"

Note: The estimates in (d) do not include the difference between

geographic spherical coordinates and center-of-mass spherical coordinates

as this is already included in (b).
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e) Gravity Field (Relative to center-of-mass)(Goudas, 1966 - Homogeneous

body).
Maximum (Triaxial Ellipsoid) + 20"
Maximum (8th order) + 10" (V)
Maximum (4th order) + 30"
a. Polar Regions + 30"
b. Equatorial Regions + 10"
"Best' Operational Estimate + 50"
'"Best' Operational (Post-orbiter) + 5"
f) Local Stochastic Vertical Deflections
Possible Uncertainty
a. Mountainous Areas + 100"
b. b. Plains + 20"
c. Plains (surface undulations) + 100"
"Best' Operational Estimate + 50"

g) Spherical Topocentric System (geoid or surface corrections are ignored)

Gravity Reference (Estimate)
4' Systematic

Surface Reference (Estimate)

i+i+

The total r.m.s. uncertainty for center-of-figure spherical coordinate

references can be compared with center-of-mass spherical coordinate references.

Estimated Operational Errors. (Projected)
Source of Gravity and Surface (perfect horizon)
Error Center-of-Mass and Center-of-Figure
(a) +0%05 (a) +0705
(b) — (b) 40"
(c) + 10" (c) + 10"
(d) — (d) + 90"
(e) + 50" (e) -
(£) + 50" (£) + 100"
(g) v + 130"
Total r.m.s.v + 60"
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If the general deflections of the vertical are ignored, the errors are

systematic as well as stochastic.

Ad +1' arc Ad +4' arc
r.m.s. #1' arc r.m.s. +2' arc

Finally, even if the geoid or gravity field are considered, current probable

errors on the known constants for expansions to the fourth order
r.m.s. + 2' r.m.s. + 8'

These represent the uncertainties of reference to a spherical system at
the respective coordinate origins.

Because of the smaller lunar radius, one nautical mile on the moon
has a spherical arc of 4' not 1' as on the earth. For navigational pur-
poses, the current set of constants are probably suitable, but not so for
geodesy. But outlook is not as gloomy as it might seem, especially in
view of research now in progress or being planned. As expected a gravi-
tational reference system is superior to a surface system. This is
fortunate for celestial mechanical purposes, but is a disadvantage for
geological or geodetic uses. By the time, LANS is to be used extensively,
it is probable that the situation will be much better.

A hybrid system which will probably be the most useful in practice
employs a gravitational zenith as a reference line, but has its origin
at the center-of-figure. Such a system would not use a horizon reference
and thus eliminate the errors of the geoid. This system would suffer,
however, if the position of the center-of-figure cannot be determined

accurately.



Estimated Errors
Gravitation Zenith, Center-of-Figure
(Local Deflections of Vertical are ignored)

Maximum (Current) Post-Orbiter Post~-Apollo
+5' of arc +30" of arc (?) +10" of arc

Again it must be stressed that the figures given are estimates. It is
important that the actual errors be evaluated as soon as possible, by lunar
surface observations.

For system tests, we have chosen constants which we believe to be the
best available, but the ALGOL programming flexibility permits a change when
other constants become available. As an example of the differences which can
result for divergent choices of the B, y parameters for the moments of inertia,
the following table of positions of Mars as seen in selenocentric coordinates
is given below.

MARS POSITIONS

8 = 0.00063
y = 0.00010 y = 0.00022 y = 0.00032

(near tabular singularity)

AR.A. = 2216 AR.A. = +41'8 AR.A. = ~267'5
ADec = +32"2 ’ ADec = ~ 5'8 ADec = - 33V1
AS.T., = -15.8 sec AS.T. = +0.6 sec AS.T. = +16.5 sec
y = 0.00020
‘ g = 0.00060  : g = 0.00066 B = 0.00063
AR.A. = +20.5 sec AR.A, = -22.6 sec AR.A. = 0.0 sec
ADec = -304.5 sec AR.A. = +312.2 sec AR.A. = 0.0 sec
AS.T. = 40,9 sec AR.A. = -0.9 sec AS.T. = 0.0 sec

8 IS THE EQUATORIAL MOMENT PARAMETER
y IS THE POLAR MOMENT PARAMETER

TN TN T Tw e
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Sec. 7 Programming Details

LANS has been programmed in Extended ALGOL 60. The basic LANS program
has been diagramed in Appendix 1. However, it is not necessary to know the
details of these programs in order to use them, provided details are availa-
ble of the appropriate data formats. In this section, these details are
presented for the three main programs. Input instructions for the auxiliary
programs are also given.

The files for the empirical data reduction program have all been declared

internally, but for the basic program and the orbit program, no files were

declared internally in original versions, but calls and formats for card
reader (CR), card punch (CPH), and line printer (LP) have been left in. These
formats, especially for the basic program, are not elaborate in anticipation
of changes to magnetic tape or disk for 1/0 operations. Headings have been
omitted for a number of options of output, but the data obtained are fully
described in this section so no confusion should result.
A. Basic LANS Program

The following is a description of data input required for operation
of the basic LANS program in its present form. It be noted that some of the
Boolean options are mutually exclusive. If any one of these is set true all
of the others must be set false. These are listed below. If not already
declared, files CR, CPH, and LP must be declared.

SUNNY, POLAR, EARTHY, NAGAV.
CHECK, EPHEM, LONLAT.

Some options can be used only if other options are set true, these are:

PUNCHOPT ~ LONILAT
LONILAT - LONLAT
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ORBCOMP }

MOONEL  ORBFL

PLANEL ( ©F

DIRECTO,' STATION

MEANCAT - STAR

RISESPHERE - LONLAT

HELIO - EARTHY

BARBY ~ READINOPT
All other options either are ignored, if not needed, or can be used
independently. All Boolean options are L6 formats, right adjusted. The
data cards required are:

1) L6 - Option HOMOG, one card, if true when GENERAL is true will
compute gravity field coefficients from geoid coefficients.

2) 16 - Option TRANITE, one card, if true when GENERAL is true will
generate gravity field using center~of-mass longitude, latitude, and radius
to compute gravity parameters rather than using center-of-figure coordinates.

3) L6 - Option SUNNY, if true, solar coordinates (an appropriate field
of zeros) must be input later as a planet. Then, if SUNNY, zero longitude
sidereal time and zero longitude solar time are listed as a function of date.
(One card).

4) L6 - Option DATEFIX, if true, calendar conversion of Julian date
is written. Otherwise numerical Julian date is printed. (one card).

5) L6 - Option INVERT, one card, if true, the heliocentric coordinates
of the station must be used instead of the stationocentric coordinates of
the SUN.

6) L6 - Option PUNCHOPT, one card, may be true only if LONILAT IS TRUE.
If true, punches cards for use in orthogonal polynomial fit program. If false,

the actual pseudo-coordinates are printed out in the order - sphere - gravity-

surface.
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7) L6 - Option READINOPT, one card, if true, allows a large set of
constants to be read in directly later in the data deck. (see comment
(21) for list of constants.)

8) L6 - Option UTETCON, one card, if true, it must be followed by a
card giving the Ephemeris Time minus Universal Time correction in seconds
free-field format). This option will interpolate tabulated quantities for
difference between U.T. and E.T. If false, E.T. is used. If true, U.T.
is used,

9) 16 - Option POLAR, one card, if true, the 1950.0 equatorial (earth)
coordinates of the lunar north pole are obtained. Geoid ~ gravity constants
are omitted, as are planet-sun-moon positions if this option is used. The
1ibration constants, however, must be read in as usual followed by a card
in free-field format giving the starting Julian date and the number of days
for which pole positions are desired after that date (see items after (20)).

10) L6 - Option EARTHY, one card, if true the program runs as usual
except geocentric coordinates are obtained. Positions are corrected for
everything but nutation. READINOPT should be set; otherwise, the constants
used for computation of the zenith will be those for the moon. General
should not be set true unless the geoid-gravity constants for the earth

are input,

11) 16 - Option BARBY, ome card, if true, precession constants may be read

into the program directly.

12) 16 - Option FOLLOWUP, one card, if true, then a new set of options
and data follows and the program will repeat until FOLLOWUP is false.

13) L6 - Option NAGAV, one card, if true, the local sidereal time, and
object-hour angle, will be printed out along with the LONGITUDE (ANGULAR AND

TIME UNITS) and LATITUDE. LONLAT must be true. (see (15)).
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must also be true; if true and PUNCHOPT false the spherical and pseudo-
longitude and latitudes (gravity and geoid) are printed out; if true and
PUNCHOPT true a set of four data decks are punched. The order of decks
are:

a) LATITUDE geoid - LATITUDE sphere = f] (LAT sphere, LONG sphere)

b) LONGITUDE geoid - LONGITUDE sphere = f (LAT sphere, LONG sphere)

c) LATITUDE gravity - LATITUDE sphere = f3 (LAT sphere, LONG sphere)

d) LONGITUDE gravity - LONGITUDE sphere = f; (LAT sphere, LONG sphere).
Each of these decks are to be run through the orthogonal fit program to
obtain four coefficient sets which in turn are used by the empirical data
program. In addition to the data decks, the following information is
printed out.

a) spherical longitude and latitude

b) total deflection of the vertical

c) normalized values of local center-of-figure distance and gravity
magnitude. If the number of latitudes, n and number of longitudes, m for
which the four data decks are desired are such that n x m > 1023, then
PUNCHOPT is automatically set false and the pseudo-coordinates are printed
out,

15) 2F10.1, 2I5, 7L6, one card giving the following:

a) Julian Date of First data point of first data set (FIRST).

b) Julian Date of last data point of first data set (LAST).

c) Number of Tabulations per day for the desired output (PERDAY).
Note: (FIRST - LAST) x PERDAY = All must be less than 80 to prevent array
overflow.

d) Number of objects, both planetary and stellar for which data is

to be generated. (ENDRUN).
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e) Boolean DECIS - if true geocentric lunar cooridnates given
in earth radii will be converted at astronomical units.

f) Boolean SPHERE - if true, topocentric corrections will be computed
for spherically symmetric geoid and gravity fields. Output order is:
sphere (center-of-figure) - sphere (center-of-mass) - sphere (center-of-figure).

g) Boolean ELLIPSE - if true, topocentric corrections will be computed
assuming triaxial geoid and gravity field. Output order is: sphere (center-
of-figure) - gravity (center-of-mass) - geoid (center-of-figure).

h) Boolean GENERAL - fi true, topocentric corrections will be computed
using spherical harmonic expansions of the geoid and gravity field. OUTPUT
order is sphere-gravity-geoid.

i) Boolean CHECK - if true, ecliptic and nodal coordinates are read out.

j) Boolean EPHEM - if true, a standard selenocentric ephemeris will be
generated including coordiantes, distances (for planets) and radial velocities
as a function of time.

k) Boolean LONLAT - if true, (with LONILAT FALSE) a topocentric ephemeris
in altitude/azimuth referenced to a spherical, gravity, and geoid respectively,
is printed.

16) L6 - Option HELIO, one card, if true, one set of primary coordinate

data can be omitted from input (see 23).

17) '"Free-field"”, two integers (TERMA, TERMB) which indicate, respectively,
the order of the geoid and gravity expansions for which coefficients will be
available and read in if GENERAL is true.

18) '"Free-field" - Two integers (TERMC, TERMD) which indicate number of terms
to be truncated from the series expansion in the calculation of the geoid

and gravity field, in case GENERAL is true.
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19) ‘"Pree-field" - six Real Numbers - "for topocentric corrections"

a) LONNY -~ smallest longitude value for tables

b) LAITY ~ smallest latitude value for tables

c) BIG - longitude interval for tables > 0

d) AIG - latitude interval for tables > 0

e) BIGG - largest longitude value for tables

f) AIGG - largest latitude value for tables.

If [(LONNY - BIGG)/BIG x (LATTY-AIGG)/AIG}> 1024 PUNCHOPT is set
false and "LONGITUDE - LATITUDE GRID TOO LARGE FOR ARRAY" is printed. If only
one longitude - latitude position is to be used then set LONNY = AIGG =
longitude and LATTY = BIGG = latitude and AIG = BIG = 1.0. (one card)

20) L6 -~ Option INTRER and integer (NNI), one card, if true and NNT
> 0 then NNI cards must follow giving specific Julian dates for which data
in the range between FIRST and LAST is desired. The format for these cards,
if included, is F12.6.

The items (1) to (20) must be present in every data deck, even if they
are not used for a particular option. The next items are listed in proper
order, but may or may not be used for a particular option. The next items
are listed in proper order, but may or may not be present according to the
options set in (1) - (20).

21) 1If READINOPT then the following cards must come after (20).

a) Free-field, one card, (WOMEGA) giving the rotation rate in radians
per day.

b) Free~field, one card, (CENX, CENY, CENZ) giving the x, y, and 2z
displacements of the center-of-figure relative to the center-of-mass.

c) Free-field, one card, planet (earth) radii to astronomical units

conversion factor. (ERTOAU).
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d) Free-field, one card, satellite (moon) radii to astronomical units
conversion factor. (LR to AU).

e) Free-field, one card, mean radius (RZERO) and height above mean
radius (HZERO) for topocentric corrections.

f) Free-field, one card, sine (SIE) and cosine (COE) of the obliquity
of the ecliptic for epoch other than 1950.0 may be input here if desired,
These are used in precession and libration calculations.

g) Free-field, one card, seven numbers (A0, BO, CO, CAPA, CAPB, CAPC,
M) giving the X, Y, Z, triaxial semi-major axes, the X, Y, Z moments of inertia,
and the mass respectively. These are used for the ELLIPSE option.

22) 1f GENERAL then the following cards must come after either (20) or (21).

a) Cards with TERMA coefficients in 6E10.2 format giving the spherical
geoid expansion.

b) 1If not HOMOG, then cards with TERMB coefficients follow in 6E10.2
format. If TRANITE these coefficients must be for an expansion in center-
of-mass longitudes/ latitudes, instead of center-of-figure longitudes/latitudes.

If LONILAT, (22) is the last data to be included for input.

23) Primary Data Sets - Three groups, unless HELIO is true, in which case
set (c) below is omitted. Each group has a set of cards, the first of which
has, free-field format, the order of interpolation (N), the number of days
time argument of the data (DAYS), the Julian date of the first data point
(FIRS) and the Julian date of the last data point (LAS). Be sure that

(LAS - FIRS)/ DATE <80. The remaining cards have, in free-field format,

X, Y, Z coordinates, respectively, for each day between (LAS-FIRS) at inter-
vals of DAYS data. The three sets should have X, Y, Z coordinates read in the

following order (INPUT [1I, II, J])
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a) Planetocentric (geocentric) coordinates of the Sun (II=0)
b) Heliocentric coordinates of center-of-mass of solar system (1I=1)
c) Planetocentric (geocentric) coordinates of moon (II=2).

23) L6 - Option STATION, one card, if true, it must be followed by the

following set of cards. If it is false then (25) follows immediately
after (24).

If STATION THEN
a) 4L6, one card, four Boolean Options

1) ORBCOMP - if true, orbital elements will be used to generate station
positions.

2) MOONEL - if true, orbital elements referenced to the lunar center-
of-mass may be used. It is assumed that these elements use a Kepler's constant
such that the orbital semi-major axes are in lunar radii units.

3) PLANEL - if true, orbital elements referenced to a planet center-
of-mass may be used, provided the elements give distances in planet radii
not astronomical units.

4) DIRECTO - if true, X, Y, Z heliocentric coordinates can be input
directly without disturbing the primary data set.

b) L6 - Option READELEM, one card, if true only a single set of orbital
elements will be used. If false, a set of coefficients giving the time-
dependent orbital elements must be put in.
c) 1If ORBCOMP then a set of cards follow (b):
A) 1If not READELEM then coefficients are input.

one card - F12.4 - Julian date of time-epoch (E[0])

one card - F12.8 - obliquity of ecliptic in degrees. (ECL).

gix cards - 3R12.8 - on each card the constant term, first and

second power coefficients of one orbital element. (ACOFF, BCOFF,
CCOFF).
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The order is a, e, i, u, Q, T.
B) 1If READELEM then INSTEAD of (A) use:

one card ~ 6F12.8 - giving orbital elements in order a, e, 1, w,9,

T in degrees. (E[I]).

one card - F12.8 - ecliptic obliquity in degrees. (ECL).
It should be noted that the appropriate cards for (A) or (B) can be cbtained
directly from the orbit calculation program (B) or from the orbit calculation
program as processed by the power-series least-squares program (A).
d) If MOONEL OR PLANEL, cne card, F12.8, giving the appropriate Kepler
constant.
e) If DIRECTO, items (c) and (d) are omitted. Instead, a set of (LAST-
FIRST) x PERDAY (= ALL) cards must be put in. On each card in 3R12.9, the
X, Y, Z 1950.0 coordinates are entered.
25) 1In 6E12.3 format, a series of cards. The first field gives the mean
axial inclination (INC), the remaining fields give the libration - nutation
coefficients. A deck in the appropriate format and order may be obtained dd
by using the coefficient 8, A interpolation program. The order of
the first forty-five coefficients is as follows.

(COEFF([J,1])
a) 10 T coefficients (J = 1),

2 (F-D (I =1)

(L")

(L-L'-D)

(L - 2D)

(L)

2 (L-1L'-D)
2(L - D) - L")

2(L~-PF)
2 (L~-D (I = 10)
5 blank fields (I=11¢to1I=15)
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b) 15 - 1o coefficients (J = 2)

2 (F-D) (I1=1)

2F

(L - 2F)

(L - 20)

L

2L (I =6)

9 blank field. (X=7to1l=15)
¢) 15 p coefficients (J = 3)

2 (F - D) I=1

2F

(L - 2F)

(L - 2D)

L

(L~ P I=6

9 blank fields (I =7 to I = 15)

If option POLAR is true then items (22), (23), and (24) must be omitted.
Then (25) is followed by a single card, which in free-field format, the
Julian date for which the computations of the pole position are to start
and the number of days for which positions are desired thereafter. If
POLAR is true, this card is the last item in the deck and any of the follow-
ing items must he omitted.
26) Secondary Data Sets - card sets, ENDRUN in number, with following
characteristics.

a) 2L6, Option's STAR, ORBEL one card.

b) If STAR is false, one card. L6, F12.2, Option RISESPHERE, integer
giving the unit distance semi-diameter, in seconds of arc. RISE-
SPHERE AND LONLAT are true, then rise, set, and transit times are computed.

c) If STAR is false, ORBEL is false, the cards that follow refer to
objects within the solar system, but give X, Y, Z coordinates directly. If
ORBEL is true, it serves the same function as STATION in (24). The cards
that follow, if ORBEL is true, are identical in format and label to those

used in (24, a-e) and will not be repeated here.
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If STAR is false and ORBEL is false, cards (a) and (b) are followed
by:

d) one card, 2A6, 2I5, 2F15.3, the first two fields contain the object
name, the third field is an integer giving the order of interpolation (N),
the number of days interval at which the X, Y, A data is available, the last
two fields contain the Julian dates of the first and last data points which
follow. (FIRS, LAS).

e) X, Y, 2 date, in number and format exactly as for set (a) in (23)
with free-field format but with only single array INPUT [I, O, J] being used.
There are no sets corresponding to (b) and (c) in (23) in this part of the
deck.

If STAR is ture, ORBEL is ignored, items (b), (c), (d), (e) are replaced
by (b') and (c') given below.

(b') 2a6, 213, ¥7.3, 213, ¥6.2, 3F7.3, one card, the first two fields
contain the star name, the next three fields contain the star 1950.0 right
ascension in hours, minutes, and seconds, the next three fields contain the
1950.0 declination in degrees, minutes and seconds, the next field the
stellar parallax in seconds of arc, the next field contains the stellar
proper motion at 1950.0 in seconds of time of right ascension, the last field
contains the declination component of the stellar proper motion in seconds
of arc. (STARND[O], HRS, MINT, SECT, DEG, MINA, SECA, PIE, MUA, MUD):.

(c') 2L6 - Options RISESPHERE and MEANCAT. If RISESPHERE and LONLAT
are true, the time of rise, set, and transit of the star are computed.

If MEANCAT is true, the 1950.0 quantities entered in (b') can be mean cata-

logue places, not ''true'" mean places. (see Explanatory Supplement Chapter 4

on mean and apparent places of stars.)
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If FOLLOWUP is true an entirely new deck must follow. The next deck
must be prepared according to the items (23) through (26) above, except (25)
is omitted in the followup decks. Each "followup" begins with a single
card, similar to (20), on which the Julian Day of the first data point and
the Julian Date of the last data point in each followup deck is put in 2F10.1
format. Then in 216, the number of desired tabulations per day and the number
of objects are printed. The tiems (23), (24), (26) are entered as for the
first deck.

If FOLLOWUP is false, the data deck is complete.

It has not been possible in the development period to test all of the
options under all data conditions. All options have been tested and barring
typographical punch errors, or incorrect data handling they should operate
normally. For a number of constructs, it may be desirable to reformulate
some operations. Several options are necessarily slow. These should be
avoided, if not absolutely essential. The worst are DATEFIX, UTETCON, and .
RISESPHERE. Option UTETCON is particularly time consuming since double
interpolations are involved.

At the present time, the astronomical input data (X, Y, Z coordinates)
is accurate to 10~8 astronomical units. The normal functions SIN(X), COS(X),
SQRT (X), etc., are also accurate (for single precision) to about 10-8. 1If
angular arguments to an accuracy of +0V001 arc or smaller become possible

or are desirable, double precision function procedures are recommended.
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B. LANS EMPIRICAL DATA PROGRAM (LUNAR)

There are basically two parts to the LUNAR program. One part calculates
longitude and latitude from the moon's surface, and the other part calculates
the equatorial epoch, ascending node Q, and inclination E for: navigation from
a space craft.

The input data depends completely on which part of the program will be
used. An initial input card containing a free field one or zero determines

the part to be used.

Part One - Navigation on the Lunar Surface
1. 1Initial option card = 1, followed by either a zero or one in free-field
format. 1If zero then randomness of residuals is not tested. The second figure
must be one, if observations of single object are input. If the observer is
spin-stabilized, the figure must be zero and coordinates of M different objects
used. This sets option SINGLER.
2. Second option card determines whether data for a sphere, a geoid, or for a
gravity field will be used in the orthogonal calculations for longitude and
latitude. The card must contain, in free-field format, three integers which
are either zero or one, where one Indicates this option is to be used . The
first number is for a sphere, second for a geoid, and third for gravity.
If space craft (see later) is true, the first number should be one and the
others zero.
3. Actual observational data - in chronological order

This data must contain all observed information for the calculation.
Each observation must be on two cards, and the set of data must be followed

by a sentineal card containing 80 asterisks.
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Data for each observation must have the following form, where every-

thing is free-field format:

Card 1 - Azimuth degrees, azimuth minutes, azimuth seconds, altitude
degrees, altitude minutes, altitude seconds.

Card 2 - Time in Julian days, alpha hours, alpha minutes, alpha seconds,
delta degrees, delta minutes, delta seconds, zero lunar sidereal time in hours,
minutes, seconds. If spacecraft then alpha/delta can be ecliptic coordinates

(1950.0) (1,8) or equatorial coordinates 1950.0 (a,8). If not spacecraft,

alpha/delta must be equatorial coordinates 1950.0 (a,8). There must be at least

three observations and there cannot be more than 500 observations.
4. Sentinal card described above.
5. Coefficient Deck for orthogonal polynomial calculation of latitude and
longitude. This deck must be in the format punched by Burroughs program PTS-
062. There will be four parts to the deck - from 4 distinct runs of PTS-062.
They must be arranged in the following order: Geoid - latitude coefficients,
Geoid - longitude coefficients, Gravity - latitude coefficients, Gravity -
longitude coefficients.
6. Tolerance to be used in random test. This must be a number in free-
field format, and should be less than three sigma estimated instrument error
for the original observations, but larger than the estimated variance of
the initial least-squares reduction.
7. Order of polynomial fit in random test.

This must be a positive integer in free~field format. The number must
be less than ten.
8. Order of Fourier fit in random test.

This must be a positive integer in free field format. The number must

be less than ten.
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Part Two - Spacecraft navigation option.

1. Initial option card = 0, followed by either a zero or one in free-field
format. If zero then randomness of residuals is not tested. See note on

first data card described in Part 1. This sets option SINGLER.

2. Second option card determines whether the spacecraft is rotating or

not, and whether one object is used as the observation point to determine

alpha and delta. This card must contain two numbers in free-field format. The
numbers must be either zero or one, where one indicates that this option is the
one to be used. The first number indicates if rotation is assumed. (OPTION
ROTATE) The second indicates whether one or more objects are used for alpha,
delta observations. (OPTION HOLDER)

3. Actual observational data -~ Part 1 - in chronological order.

This data must contain azimuth and altitude observations. The data must
be in free-field format, with one observation per card. A sentinal card must
follow the data and must contain 80 asterisks. The data on each card is
assumed to be:

Azimuth in degrees, azimuth minutes, azimuth seconds, altitude degrees,
altitude minutes, altitude seconds, time in Julian days.

There must be at least three observations, but no more than 500.

4. Sentinal card described above.
5. Either an omega value to be read in or a set of values to be used for
a randomness test depending on the rotate option read in previously.

If ROTATE is true, a tolerance value, polynomial order value, and a
Fourier order value on three separate cards must be read in. See the des-
cription for input data 5, 6, and 7 under the Lunar Surface option.

If ROTATE is false, a card containing a number which will be Q in the

calculations must be input. The number must be in free-field format.



ETEEETTT T T T T B T BE B BT aw BT h BB B B B e

77~

6. Either a single card containing alpha, delta information, or a complete
set of alpha, delta information depending on the option set on the Second
option card.

If only one observation is made for alpha and delta, the card must
contain in free-field format, the following information:

Alpha in hours, alpha minutes, alpha seconds, delta degrees, delta
ninutes, delta seconds.

If several observations are made, a card must be input for each obser-
vation with a sentinal card as described above, following the set of obser-
vations. This type of data card must contain, in free-~field format, the

following information in chronological order:

Time in Julian days, alpha hours, alpha minutes, alpha seconds, delta
degrees, delta minutes, delta seconds. At least three, but no more than
500 values should be input.

/. Tolerance value for random test: see part 5 in Lunar section.
8. Polynomial order value for random test; see part 6 in Lunar section.
9. Fourier order value for random test; see part 7 in Lunar section.

The LANS empirical data program has as its most important procedure a
modified statistical program. It is called LEASTSQ. The description is a
summary of the uses and needs of LEASTSQ, a procedure which performs least-
squares and other analyses of statistical data. The procedure LEASTSQ is
a modification of the Westinghouse Regression program.

(Research Report 64-1C4-362-R1).

The purpose of the modifications was to make the program a procedure
and yet allow communication with the procedure.

Communication is accomplished by declaring certain variables globally, .
changing the card reader file to a desk file, and saving "answers" in three

globally declared arrays.
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The procedure is specialized such that no extra "header" cards are
needed, therefore eliminating the transformation and polynomial options
available in the program, and also without the plotting facilities.

The following variables must be declared globally, and set appropriately
before entering LEASTSQ:

INTERGER OPT 1, OPT 2, OPT 3, OPT4, OPT 5, OPT 6, OPT 7, OPT 8, OPT 9, OPT 10,
OPT 11, OPT, 12, OPT 13, REPSS, NOLAG, M, N, Q, H: ARRAY ANS1, ANS2 [0:30],
ANS3 [0:500]; FILE READER DISK SERIAL [20:500] (2, 30);

These declarations have the following meanings and implications:

M = number of observations

N = number of independent variables

Q = N + number of dependent variables
H = total number of input items per observation
READER is a file containing the observations. These are to be read unedited
("*" format) on N cards. On each card, in order, are the following:

1) dependent variable

2) independent variable

3) " "

4) " "

The OPT 1 -~ OPR 13, plus REPSS and NOLAG are options controlling the flow
through the pcogram. The most basic linear regression assumes all of these
= 0; to "set" an option set it equal to 1.

Some options cannot be used because of the modificationms.

Some that can be used are:

OPT 8 for printout of correlation matrix
OPT 11 for printout of correlation coefficient information

Others may be possible.
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The ANS1, ANS2 and ANS3 arrays contain the only "answers" after the
LEASTSQ analysis, excepting whaever printed information has been written.

ANS1 contains the regression coefficients such that
ANS1 [1] has the coefficient for the first
independent variable, ANS1 [2] for the second,
and so on.

ANS2 contains the corresponding standard deviations for each regression

coefficient.

ANS3 contains the Y residuals for each observation.

The current limits, which can be controlled by a change in the global

declarations are:

1. No more than 30 independent variables are allowed change by
altering upper bound of ANS1 and ANS2.

2. H cannot exceed 30. Change this by increasing the record length
in the READER file declaration, as well as ANS1 and ANS2 conse~
quently.

3. No more than 500 observations possible. Change by increasing
the upper bound of ANS3.

The input is assumed to be arranged in READER such that m observations

are read in, one record at a time.
Note: If any changes are made in the LUNAR program, which uses LEASTSQ,
care must be taken to preserve the global variables m, n, q and h as being

for the use of the LEASTSQ procedure.

C. GAUSS ORBIT PROGRAM

The program uses the Gauss method as outlined by Dubyage (1961). A .

number of options are available. Orbital elements may be determined using
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the extreme observations (in time) or using all the available observations
taken three at a time. Only observations from one station can be used.
Cards required are the following:
File declarations required are CR = card reader, CPH = card punch,
LP = line printer.
1) One card, free-field, number of observations (N>3).
2) One card, L6, option SQUARE, if true orbital elements (time-independent)
are punched on cards in the correct format for input to LANS. 1If false, card
output must be used as input for the polynomial least-square.
3) One card, L6, option RESIDCAL. if true the right ascension/declination
residuals are calculated and printed out, followed by the observation number,
4) One card, L6, option XERO, if true, the rectangular elements A, Ay,
Az, By, By, B, are put out instead of the normal a, e, w, 1, 2 elements.
5) One card, L6, option GROUNDER, if true, the topocentric coordinates of
the ground station are used instead of solar positions. This makes it possi-
ble to solve for satellite orbital elements, provided the appropriate Kepler
constant has been input.
6) One card, L6, option PLANEL, if true, a different Kepler constant can
be used and the positions of one satellite may be used to determine the
orbit of another. PLANEL should be true, if GROUNDER is true.
7) One card, 3L6, options INVERT, SPACET AND LONGEST,

a) INVERT - if true, X. Y, Z coordinates of the observed object must
be input, instead of the normal X, Y, Z solar coordinates. The orbital
elements obtained are those of the station.

b) SPACET - if true spacecraft coordinate analogs of R.A. (o) and

Dec., (6) can be put in.



— T U WU SN E v w I B D B = e

-81-

c) LONGEST - (must be true if SQUARE is true) if orbital elements
found are those using the two extreme (in time) observations and one near

the mean interval.

8) 1If SPACET is true, one card, free-field, is next with the following

information:
a) rotation rate in radians/day (WWW)
b) longitude of descending node (W)
c) obliquity of ecliptic (inclination) (FFF)

d) Julian date epoch of (a), (b), (c). (TZERO)

9) One card, free-field, giving the Julian date (arbitrary) of a time

near the mid-point of the set of observations. (TE)
10) Obliquity of ecliptic (for earth) for the epoch to which the observations
refer, one card, free-field (EE)
11) If PLANEL is true, then on one card, free-field, the semi-major axis

(in astronomical units) which changes the golar Kepler constant to that for
the particular planet is input, (Kplanet = Ksun a3/2) (AAAA) .
12) If not SPACET, ome card, free-field with the topocentric qualities as

defined in the American Ephemeris and Nautical Alamanac, but in special units.

a) ' the longitude of the station expressed in fractions of a day
15° = 1hr 24hrs = ) pay (LAM)
b) the topocentric radius (expressed in astronomical units) times
the cosine of the latitude, (DELXY)
¢) the topocentric radius (in A.U.'s) times the sine of the latitude
(DELTAZ)
13) A set of N cards, free-field format.

a) right ascension of Ith observation (EPH [I,1]) in hours
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b) declination of Ith observation (EPH [I,2]) in degrees
c) Julian date at Oh U.T. of the Ith observation calendar date (EPH[I,3])
14) One set of N cards, free-field format.

a) If SPACET then read in the Universal times of the N observations (in
decimals of a day). (UT[I]).

b) If not SPACET then read in the zero-longitude (at Ob U.T.) sidereal
time (in hours), and the Universal times (hours) of the N observations.
(spT{1], UT{1]).

15) 1If not GROUNDER, a set of cards in the following order, free-field format.

a) one card, the number of days interval between the time arguments of
the solar or planetary X, Y, Z data that is to be used. (QRS)

For each observation, four X, Y, Z coordinates (of the sun or observed
planet) are required to be input so that interpolation to the time of obser-
vation may be sufficiently accurate. If QRS is equal to one day (see (a)),
then the Julian date of the second X, Y, Z position of the every four should
be equal to the Julian date of each observation. If QRS is not equal to one
day, the X, Y, Z positions should be chosen so that the observation date
falls between the second and third of each set.

b) a set of N card groups, free-field. The Julian date for each second
X, Y, Z position goes on the first card, followed by four cards with X, ¥, 2
positions themselves, selected as described above.

(JULIO[I]), SUNC1[I,J], SUNC2(I,J], SUNC3[I,J], SUNC4[I,J]).

This ends the data required for the orbit calculation program.
D. LIBRATION COEFFICIENT PROGRAM.

File declarations CR = card reader and CPH = card punch are needed.

Data input consists of a single card, free-field format, which gives a 8
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value (see Sec. 3) and an f value. The order is B first and f second in
normal use, but the coefficients generated should be checked by making a run

with the order reversed.

E. POLYNOMIAL LEAST-SQUARES.

All files are declared. The data arrangement of the original program
is described in Burroughs Technical Bulletin MRS-134. This has been modified
twice since 1964. The first modification has been described by Hoyle (1964).
A reprint of his description is included with the program deck. The only
modification we have made in addition to Hoyle's I/0 are the following
Boolean options which must be included in each data deck (For LANS, there
are six consecutive ones):

a) one card, L6, option PUNCHOPT, if true, the output will be on cards
and if P = N = 2 then the deck will be ready to be put in LANS. Coefficients
up to P + 1 order are included,

b) one card, L6, option REPET, if true, a regression of y on x as well
as X on y can be obtained without changing the data order.

c) one card, 5L6, options STEPN, INTEG, DIFFL, SELFC, FOLLOW. For
LANS, STEPN « TRUE, INTEG, DIFFL, SELFC, normally set false, and FOLLOW set

true, for all but the last data deck,

d) one set of data cards (For LANS there will be six separate data decks),

e) group of data should end with a blank card.
f) one card, I2, X1, 12, giving the order of iteration and highest

included power of X. (For LANS both of these should be set to 2).
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F. CALENDAR DATE CONVERTER.

Files CR = card reader, LP = line printer need to be declared.
a) one card, free-field, integer giving the number of dates to be
converted. (R)
b) R cards, free-field, (don't forget the quotation marks for the
alpha variables) with following fields per card.
a) alpha variable, abbreviation of the month - JAN, FEB, MAR, APR,

MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC, are allowed (MON).

b) integer giving day (DY)
c) integer " year (YR)
d) " " hour (HR)
e) " " minutes (m)
f) real " seconds (s)
g) alpha " type of time used, abbreviation.

G. ORTHOGONAL POLYNOMIAL PROGRAM.

This program is run without modification. For information on operation

see Burroughs Bulletin PTS-063.
H. CENTER-OF-MASS PROGRAM

Files CR = card reader and CPH = card punch must be declared. Input data
required are:

a) one card, free-field, integer giving the total number of center-
of-mass positions required. Note: all planetary coordinates to be used
must be subtabulated to the game time epoch and interval before putting

in this program. (NN<65).
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b) nine card groups. First card, free-field format, of each group
is a real number giving the mass fractions of one planet relative to the sun
(see Explanatory Supplement). This first card is followed by NN cards giving

the planet heliocentric coordinates X, Y, Z per card in 3E20.11 format.

I. TWO DIMENSIONAL NEWTION INTERPOLATION PROGRAM. For Z = f(x,y).
DATA INPUT only:

a) one card, L6, option PUNCHOPT, if true data is punched out in format
6E1Z.3

b) one card. free-field, integer giving number of data sets to be
processed. (Q)

c) one card, free-field, inter giving the number of different values
to be interpolated from each data set. (L)

d) one card, free-field, two integers, N and M giving the number
of X values, and the number of Y values respectively.

e) one card, free-field, two integers, NN<N-1 and MM<M-1 giving the
number of differences for X adn Y respectively.

f) 1in format 6E10.2, N values of the x variables

g) 1in format 6E10.2, M values of the y variables

h) in format 6E10.2, Q x N x M values of fq(x,y) function.

j) L cards, free-field, giving x, y values for which new f(x,y) are
to be found.
This concludes the brief data-input descriptions. For further details, the

program listings and flow charts should be consulted.
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SUMMARY

In the preceding sections we have outlined the structure and philosophy
of the Lunar Astronomical Navigation System (LANS). Although the present
accuracy is not quite sufficient for surface geodetic studies, it is probably
sufficient for all celestial navigation tasks. Upon completion of the lunar
orbiter and surveyor programs, the physical constants should be very much
improved. Thus even by the first Apollo flights very accurate (=+0"1)
ephemeridies might be generated, if necessary. However, a number of diffi-
culties remain. Of particular interest are:

a) lunar libration constants, free libration and long-period forced
librations,

b) amount of the center-of-figure and center-of-mass displacement,
especially along the radial direction,

¢) actual deflections of the vertical; accelerometer measurements

in the three coordinate axes, not just the vertical component,

d) observational testing of LANS, both on the earth and from space, includ~

ing simulation of navigation problems which were not possible in the present
contract.

e) accurate geoid and gravity field parameters.

Item (a) can be studied in a number of ways both from the lunar sur—
face and from the earth, but requires a concentrated effort.

Items (b) and (e) should be available as a result of the lunar orbiter
and surveyor studies.

Item (c) may be available from some geological experiments now being
planned, but it is important to measure the total gravity vector. If

this is not included in the planning, it should be.
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Item (d) is very improtant. Testing using the EARTHY option is to be carried
out at MSFC. Tests from the lunar surface prior to Apollo missions are re-
commended, if possible. Otherwise, lunar surface operations during the
first Apollo flights for LANS testing will be necessary.

Using the LANS basic program and gravity and geoid constants (up to fourth
order) given by Goudas (1966) and Goudas and Bray (1966), we have generated
a set of tables giving deflections of the vertical, the total gravity vector
(normalized) and the normalized geoid radius as a function of spherical
longitude and latitude (+75° longitude +75° latitude in 10° steps). Also,
we have generated a table of the gravity and geoid pseudo-coordinates as a
function of spherical longitude and latitude. (Of course, these do not
include local variations). The pseudo coordiante tables were generated for
every degree step between +60° longitude and +60° latitude. Tapes of the
pseudo-coordinate tables are available.

Copies of the all LANS programs and data will be maintained at Leander
McCormick Observatory and will be available, if a disaster destroys other
existing copies. We do not plan to obtain or use magnetic tape masters of
the input data, however. These can be obtained from the U. S. Naval Obser-
vatory.

Comments and inquiries about LANS should be directed to Marshall Space
Flight Center rather than to the observatory. It is hoped that some of this
material will be available for future publication.

It is a pleasure to acknowledge the help of the following persons and
groups for their contributions in the completion of this project.

Dr. Donald Eckhardt of the Air Force Cambridge Research Laboratories for

his special set of libration constants.
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The Computer Science Center at the University of Virginia
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for a grant

which enabled the pseudo-coordinate tables to be generated for a large segment

of the visible portion of the moon.
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BASIC LANS PROGRAM.
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INPUT (J,2,1)

INPUT (J,2,1) L.@

|+ INPUT (4,3,1) X Kk

= CONVERSION
FACTOR MOON

RADII TO AU'S

| READIN OPT

I

|

—

PLANEL

READ LRTOAU |

s

‘INPUT (J,2,1)
;NPUT (J 3 1) X K

TO

K=z conveasuon
FACTOR

PLANET RADII—{
AU'S |

]READIN OPT

EAD ERTOAU|

<

)



ANGULAR
ROTATION

RATE , W
(WOMEGA)

!
! IF EQUATORIAL VELOCITY

— ~P |5 GREATER THAN
[ 0:001 KM/SEC

Il

]PROCEDURE DIURNCOMP

—
Aa - (wxa/c) COS(HA) COS LAT/C0S O
A8= (WxR/c) SIN(HA) SIN Scos LAT

R = RADIUS OF BODY
@ C = SPEED OF LIGHT
HA= LOCAL HOUR ANGLE

LAT= LATITUDE
Q = RIGHT ASCENSION

DECLINATION
ANGULAR ROTATION RATE

=
| o



RISESPHERE SPHERICAL

ALTITUDE/AZIMUTH

TRUE

JULIAN DAY |

| RISESPHERE TRUE |

STORE

PROCEL JRE PHENOM

4

IF_ALTITUDE GOES FROM (-) TO (+) THEN RISEL &~ TRUE

Nl

IF ALTITUDE GOES FROM (*) TO (-) THEN SETEL €— TRUE

Il

IF AZIMUTH GGES THROUGH 180° TRANEL. e— TRUE

4

IF AZIMUTH GOES THROUGH 360" CULMEL * TRUE

| SEMDI AM
IF RISEL OR SETEL

[LIF TRANEL OR CUL MEL |

CTiTuoes]

PROCELURE L AGRANGE PROCEDURE LAGRANGE

v

RISE OR SET TIMES TRANSIT nMEs]




THE GEODETIC PARAMETERS FOR
AN ASSUMED TRIAXIAL ELLIPSOID
a ,b,c :SEMIMAJOR AXES M= MASS
A ,B,C =PRINCIPAL MOMENTS OF INERTIA

B!

le =0 (LAT) SIN (LONG) /b2 L ONG
x2 = COSZ(LAT)x COS (LONG)/ a2 6 LAT
xg = SIN2(LAT 142 r
Yy REFERENGED TO
X, = xz‘,ng,,ﬁ CENTER OF MASS
l [ 2

EXPLICIT DIFFERENT!IATION OF R

AS ALGEBRAIC EXPRESSIONS

GIVING OR _ AND O
ILAT SLoNG

-

RESOLUTION OFQR _AND QR

INTO

LAT OLONG
RECTANGULAR COMPONENTS

¥

COMPUTATION OF NORMAL
N =9JR oR
ALAT = OLONG

¥

COMPUTATION OF DIRECTION COSINES

OF N

v

CONVERSION OF
REGTANGULAR COMPONENTS

y

SURFACE
PSEUDO LONGITUDES
PSEUDO LATITUDES

(2

GRAVITATIONAL FIELD
OF ONLY SLIGHTLY

ELLIPTICAL BODY
ASSUMED HOMOGENEOUS

¥

A, =d2.5(B-A+C)/M
B, =J25(A-B+CI/ M
C,=/25(B-C+AVM
RO

2.5(A, 48, +C_)/3

A, = 4nU1-6(ASR,)/R,
3 5
B, = 4T (1-6(B,-R /R
3 5
C, = M1~ 6(Cy R /R,
3 5
X = R, COS(LONG)COS(LAT)
Y = R, SIN(LONG)COS(LAT)
Z = R, SIN(LAT)
DENO =/(A'X)z+(B'Y)29 (c,z®
cosa = (AX)/DENO
cosb = (B,x)/DENO
COSc = (C,2)/DENO
'S
GRAVITY

PSEUDO LONGITUDE
PSEUDO LATITUDE

(8)
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Appendix 3 - TABLE OF SYMBOLS.



TABLE OF SYMBOLS USED IN LANS.
i, A, 9', I - lunar equatorial constants relative to earth equator (used
in American Ephemeris and Nautical Almanac).
A, B, C - Principal Moments of Inertia (Moon).
@, B, Yy - Moments of Inertia ratios (Moon).
f = -a/B - Lunar Flattening ratio.
A6 - Total Deflection of the Vertical.

Xos Y55 Zy - Coordinates of Center-of-Mass of Solar System, (heliocentric
equatorial 1950.0).

Mp ~ Mass Fraction relative to Sun of nth planet. Xn> Yn, Zp - Heliocentric
rectangular equatorial 1950.0 coordinates of nth planet.

X, ¥, Z or X; ?; Z - Geocentric or planetocentric coordinates (1950.0).
X, ¥, Z or i; ?; Z - heliocentric coordinates (1950.0).

Ay, Ay, Az, By, By, B, - Equatorial orbital elements (see Dubyago 1962).
a, e, w, i, Q, T - "Normal" orbital elements:

semi-major axis

eccentricity

argument of periapsis

inclination to ecliptic

ascending node
time of periapsis

HOKE O®

to - Time epoch of geometric ephemeris.

T - light time.

Mo - Mean catalogue place.

A - Apparent coordinate position.

R ~ Complete star reduction = apparent = mean.

E - "E" term of aberration (see Explanatory Supplement) .
A, B - Ecliptic longitude and latitude.

K - Aberration constant.

€, w - orbital eccentricity (of earth), argument of perihelion of earth.



17~ Longitude (ecliptic) of the descending node (orbital or equatorial).
8 - Longitude (ecliptic) of the ascending node. (orbital or equatorial).
W - angular rotation rate of body (sometimes in literature as w).

RIGHT ASCENSION
@, 8§ (or R.A., Dec.) - Equatorial angular coordinates DECLINATION

i - Inclination of orbit or equatorial plane to ecliptic.

L. H. A. - Local Hour Angle of object (sometimes in literature as left
hour angle.)

HA - Hour angle (zero longitude or local).

Long. Lat. - Longitude and latitude, topocentric station coordinates.
ST - Sidereal time (zero longitude or local).

Xy, Y3, Z7 - Heliocentric rectangular coordinates.

X3, Y2, Zy - Selenocentric rectangular coordinates.

AZ, ALT - Topocentric angular coordinates of object.

X', Y', 2' - Heliocentric or geocentric ecliptic rectangular coordinates.
g eciiptic

€ - Obliquity of ecliptic (= i for the earth).
R - Geocentric vector of sun.

T - Geocentric vector of moon.

S'— Selenocentric vector of sun.

;; - Selenocentric vector of planet.

rp - Geocentric vector of planet.

;; - Heliocentric vector of planet.

?Em - Center-of-mass vector (heliocentric).
(-p) - Heliocentric vector of station.

¢ - Total aberration of light.

¢g - Stellar aberration.

¢p - Planetary aberration.



0, p, T -~ Lunar libration components t is the perturbation of sidereal time
is the perturbation of the node
p is the nutation compomnent.

Q

W = rotation rate
w, I. - Instantaneous lunar equatorial conmstants I inclination, = longi-

tude of descendent node.

L = mean anomaly of the moon
L' = mean anomaly of the sun

L, L', F, D - Delunay Lunar Variables F = distance of moon from the node
D = mean elongation of moon from sun.

il

X planet - Keplerian constant for a planet.

K sun ~ Keplerian constant for the sun.




